Skip to main content

Synthesis, Crystal Structures, and Solid-State Optical Properties of Substituted Tetracenes

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Various tetracenes possessing substituents, such as alkyl and ester groups, were prepared. In solution, their optical properties exhibited no marked differences. However, in the solid state, their photophysics differed with respect to the length, shape, number, substitution pattern, and kind of substituent groups, which is called crystallochromy. 1,4,7,10-Tetra(n-alkyl)tetracenes exhibited the solid-state colors of yellow, orange, and red. Both their molecular structures and molecular arrangements were classified into three groups. The molecular packing correlated well with the solid-state color. In 1,4,7,10-tetra(isoalkyl)tetracenes, the increase of fluorescence quantum yield in the solid state was remarkable. The isopropyl derivative showed the highest fluorescence quantum yield of 0.90 among any tetracene derivatives. In the case of anti-/syn-regioisomeric tetracene mixtures, the change in the solid-state color before and after recrystallization was observed. The X-ray analysis revealed that more crystalline molecules were anti-regioisomers. Molecular packing of 1,4-di(n-propyl)tetracene was a herringbone fashion which was different from that of 1,4,7,10-tetra(n-propyl)tetracene. Both 2,3-di(n-alkyl)- and 2,3,8,9-tetra(n-alkyl)tetracenes had low crystallinity and exhibited slight crystallochromy. In the crystal of 2,3-tetra(n-butyl)tetracene, there were not only a 1:1 disorder of two components of the molecule but also the repeating bilayer structure of the tetracene rings and alkyl groups. In tetracene octaester derivatives, the molecule with shorter alkyl chain length in the ester moiety was more redshifted. Relationship between the solid-state color and the interplanar distance between two neighboring tetracene rings in the crystal was observed. In conclusion, the alkyl side chains could act as not only spacer but also molecular orientation adjusters, to control the photophysical properties in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891–4945

    Article  CAS  Google Scholar 

  2. Zhang Z, Zhang Y, Yao D, Bi H, Javed I, Fan Y, Zhang H, Wang Y (2009) Cryst Growth Des 9:5069–5076

    Article  CAS  Google Scholar 

  3. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  4. Anthony JE (2008) Angew Chem Int Ed 47:452–483

    Article  CAS  Google Scholar 

  5. Kitamura C (2012) Chem Rec 12:506–514

    Article  CAS  Google Scholar 

  6. Kitamura C (2014) In: Nishiwaki N (ed) Methods and applications of cycloaddition reactions in organic syntheses. Wiley, Hoboken, pp 407–428

    Chapter  Google Scholar 

  7. Klebe G, Graser F, Hädicke E, Berndt J (1989) Acta Crystallogr Sect B 45:69–77

    Article  Google Scholar 

  8. Hantzsch A (1907) Angew Chem 20:1889–1892

    Article  Google Scholar 

  9. Bernstein J (2002) Polymorphism in molecular crystals. Oxford University Press, New York, pp 257–274

    Google Scholar 

  10. Gribble GW, Perni RB, Onan KD (1989) J Org Chem 50:2934–2939

    Article  Google Scholar 

  11. Kitamura C, Abe Y, Ohara T, Yoneda A, Kawase T, Kobayashi T, Naito H, Komatsu T (2010) Chem Eur J 16:890–898

    Article  CAS  Google Scholar 

  12. Kitamura C, Takenaka A, Kawase T, Kobayashi T, Naito H (2011) Chem Commun 47:6653–6655

    Article  CAS  Google Scholar 

  13. Kitamura C, Tsukuda H, Yoneda A, Kawase T, Kobayashi T, Naito H (2010) Eur J Org Chem 3033–3040

    Google Scholar 

  14. Kitamura C, Kano H, Tsukuda H, Kawase T, Kobayashi T, Naito H (2011) Heterocycles 83:1621–1629

    Article  CAS  Google Scholar 

  15. McOmie JFW, Perry DH (1973) Synthesis 416–417

    Google Scholar 

  16. Kitamura C, Matsumoto C, Yoneda A, Kobayashi T, Naito H, Komatsu T (2010) Eur J Org Chem 2571–2575

    Google Scholar 

  17. Kitamura C, Ohara T, Yoneda A, Kawase T, Kobayashi T, Naito H (2011) Chem Lett 40:58–59

    Article  CAS  Google Scholar 

  18. Kitamura C, Ohe G, Kawase T, Saeki A, Seki S (2014) Bull Chem Soc Jpn 87:915–921

    Article  CAS  Google Scholar 

  19. Kitamura C, Ohara T, Kawatsuki N, Yoneda A, Kobayashi T, Naito H, Komatsu T, Kitamura T (2007) CrystEngComm 9:644–647

    Article  CAS  Google Scholar 

  20. Kikkawa Y, Koyama E, Tsuzuki S, Fujiwara K, Miyake K, Tokuhisa H, Kanesato M (2007) Chem Commun 1343–1345

    Google Scholar 

  21. Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371–792

    Article  CAS  Google Scholar 

  22. Kasha M (1976) Spectroscopy of the excited state. Plenum Press, New York

    Google Scholar 

  23. Fujimoto KJ (2012) J Chem Phys 137:034101

    Article  Google Scholar 

  24. Fujimoto KJ, Kitamura C (2013) J Chem Phys 139:084511

    Article  Google Scholar 

  25. Shimizu M, Hiyama T (2010) Chem Asian J 5:1516–1531

    Article  CAS  Google Scholar 

  26. Yoshida K, Ooyama Y, Miyazaki H, Watanabe S (2002) J Chem Soc Perkin Trans 2:700–707

    Article  Google Scholar 

  27. Kitamura C, Matsumoto C, Kawatsuki N, Yoneda A, Asada K, Kobayashi T, Naito H (2008) Bull Chem Soc Jpn 81:754–756

    Article  CAS  Google Scholar 

  28. Hisaki I, Sakamoto Y, Shigemitsu H, Tohnai N, Miyata M (2009) Cryst Growth Des 9:414–420

    Article  CAS  Google Scholar 

  29. Mizobe Y, Ito H, Hisaki I, Miyata M, Hasegawa Y, Tohnai N (2006) Chem Commun 2126–2128

    Google Scholar 

  30. Holmes D, Kumaraswamy S, Matzger AJ, Vollhardt KPC (1999) Chem Eur J 5:3399–3412

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in-Aid for Scientific Research from JSPS and MEXT and by the fund of the Hyogo Science and Technology Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitoshi Kitamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kitamura, C. (2015). Synthesis, Crystal Structures, and Solid-State Optical Properties of Substituted Tetracenes. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_5

Download citation

Publish with us

Policies and ethics