Skip to main content

Efficient Organic Devices Based on π-Electron Systems: Comparative Study of Fullerene Derivatives Blended with a High Efficiency Naphthobisthiadiazole-Based Polymer for Organic Photovoltaic Applications

  • Chapter
Chemical Science of π-Electron Systems

Abstract

This study focuses on a polymer based on quaterthiophene and naphthobisthiadiazole units (PNTz4T). Three fullerene derivatives, namely, PC61BM, PC71BM, and IC60BA, were selected as potential electron acceptors in regular device architectures. The resulting average PCE are 7.52, 8.52, and 2.58 % for PC61BM, PC71BM, and IC60BA, respectively. Through a careful and systematic study, we investigated the origins of the differences observed in devices’ performances. In particular, the higher Jsc and consequently higher PCE of the PC71BM devices (as compared to PC61BM devices) can be easily explained by the better light-harvesting properties in the visible range of the larger fullerene derivative. Furthermore, we demonstrate that the limiting factor in these devices is the electron collection which is closely related to the crystallinity of the fullerene derivative. The low crystallinity and resulting low electron-transporting properties of IC60BA is at the origins of the low performances of the IC60BA-based devices. Through this comparative study, we confirm that developing new materials is the key to remarkably increase the PCE of polymer solar cells. However, in order to obtain PCE over 10 %, a particular attention should be given to material combination, process, and charge balance in the devices.

The work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 20108012 “pi-Space”) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan and by JSPS KAKENHI Grant number 26889029. The authors would like to acknowledge Prof. I. Osaka and Prof. K. Takimiya (CEMS RIKEN) for very constructive discussions on this project and for providing us with the polymer material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 73:096401. doi:10.1088/0034-4885/73/9/096401

    Article  Google Scholar 

  2. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38:1929–1940. doi:10.1016/j.progpolymsci.2013.05.001

    Article  CAS  Google Scholar 

  3. Bagher AM (2014) Comparison of organic solar cells and inorganic solar cells. Int J Renew Sustain Energy 3:53–58. doi:10.11648/j.ijrse.20140303.12

    Article  Google Scholar 

  4. Kalowekamo J, Baker E (2009) Estimating the manufacturing cost of purely organic solar cells. Sol Energy 83:1224–1231. doi:10.1016/j.solener.2009.02.003

    Article  CAS  Google Scholar 

  5. Savoie BM, Tan S, Jerome JW, Shu C-W, Ratner MA, Marks TJ (2012) Ascertaining the limitations of low mobility on organic solar cell performance. In: 2012 15th international workshop on computational electronics (IWCE). doi: 10.1109/IWCE.2012.6242859

  6. Wang ZX, Zhang FJ, Wang J, Xu XW, Wang J, Liu Y, Xu Z (2012) Organic photovoltaic cells: novel organic semiconducting materials and molecular arrangement engineering. Chin Sci Bull 57:4143–4152. doi:10.1007/s11434-012-5202-3

    Article  CAS  Google Scholar 

  7. Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985. doi:10.1016/j.solmat.2007.01.015

    Article  CAS  Google Scholar 

  8. Bijleveld JC, Zoombelt AP, Mathijssen SGJ, Wienk MM, Turbiez M, de Leeuw DM, Janssen RAJ (2009) Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. J Am Chem Soc 131:16616–16617. doi:10.1021/ja907506r

    Article  CAS  Google Scholar 

  9. Li H, Wang J (2012) Layer-by-layer processed high-performance polymer solar cells. Appl Phys Lett 101:263901. doi:10.1063/1.4773515

    Article  Google Scholar 

  10. Yang X, Uddin A (2014) Effect of thermal annealing on P3HT:PCBM bulk-heterojunction organic solar cells: A critical review. Renew Sust Energ Rev 30:324–336. doi:10.1016/j.rser.2013.10.025

    Article  CAS  Google Scholar 

  11. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636–1644. doi:10.1002/adfm.200600624

    Article  Google Scholar 

  12. Yang H, Shin TJ, Yang L, Cho K, Ryu CY, Bao Z (2005) Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Adv Funct Mater 15:671–676. doi:10.1002/adfm.200400297

    Article  CAS  Google Scholar 

  13. Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa T, Takimiya K (2012) Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J Am Chem Soc 134:3498–3507. doi:10.1021/ja210687r

    Article  CAS  Google Scholar 

  14. Bredas J-L, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699. doi:10.1021/ar900099h

    Article  CAS  Google Scholar 

  15. Vohra V, Higashimine K, Murakami T, Murata H (2012) Addition of regiorandom poly(3-hexylthiophene) to solution processed poly(3 hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester graded bilayers to tune the vertical concentration gradient. Appl Phys Lett 101:173301. doi:10.1063/1.4761998

    Article  Google Scholar 

  16. Vohra V, Arrighetti G, Barba L, Higashimine K, Porzio W, Murata H (2012) Enhanced vertical concentration gradient in rubbed P3HT:PCBM graded bilayer solar cells. J Phys Chem Lett 3:1820–1823. doi:10.1021/jz300710a

    Article  CAS  Google Scholar 

  17. Vohra V, Higashimine K, Tsuzaki S, Ohdaira K, Murata H (2014) Formation of vertical concentration gradients in poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester-graded bilayer solar cells. Thin Solid Films 554:41–45. doi:10.1016/j.tsf.2013.05.171

    Article  CAS  Google Scholar 

  18. Mayer AC, Toney MF, Scully SR, Rivnay J, Brabec CJ, Scharber M, Koppe M, Heeney M, McCulloch I, McGehee MD (2009) Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells. Adv Funct Mater 19:1173–1179. doi:10.1002/adfm.200801684

    Article  CAS  Google Scholar 

  19. Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92:1476–1482. doi:10.1016/j.solmat.2008.06.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Vohra, V., Higashimine, K., Ohdaira, K., Tsuzaki, S., Murata, H. (2015). Efficient Organic Devices Based on π-Electron Systems: Comparative Study of Fullerene Derivatives Blended with a High Efficiency Naphthobisthiadiazole-Based Polymer for Organic Photovoltaic Applications. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_34

Download citation

Publish with us

Policies and ethics