Skip to main content

Higher-Order π-Electron Systems Based on Helicene Molecules

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Owing to their helical topology, helicenes, polycyclic aromatic compounds with nonplanar screw-shaped skeletons, provide high optical rotations, high circular dichroism values, and several enhanced physical organic properties. Supramolecular chirality generated from regular arrangement of helicenes further amplifies their inherent chiroptical properties. Here in this chapter, examples of higher-order molecular architectures of helicenes and their related compounds in aggregates, in crystals, and in macromolecules connected by covalent bonds are summarized, and their unique chiroptical properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meisenheimer J, Witte K (1903) Ber Dtsch Chem Ges 36:4153

    Article  CAS  Google Scholar 

  2. Newman MS, Lutz WB, Lednicer D (1955) J Am Chem Soc 77:3420

    Article  CAS  Google Scholar 

  3. (a) Martin RH, (1974) Angew Chem Int Ed 13:649; (b) Shen Y, Chen C-F (2012) Chem Rev 112:1463; (c) Gingras M (2013) Chem Soc Rev 42:968; (d) Gingras M, Felix G, Peresutti R (2013) Chem Soc Rev 42:1007; (e) Gingras M (2013) Chem Soc Rev 42:1051; (f) Kamikawa K (2014) J Synth Org Chem Jpn 72:58

    Google Scholar 

  4. (a) Nuckolls C, Katz TJ, Castellanos L (1996) J Am Chem Soc 118:3767; (b) Lovinger AJ, Nuckolls C, Katz TJ (1998) J Am Chem Soc 120:264; (c) Nuckolls C, Katz TJ, Verbiest T, Elshocht SV, Kuball H-G, Kiesewalter S, Lovinger AJ, Persoons A (1998) J Am Chem Soc 120:8656; (d) Nuckolls C, Katz TJ, Katz G, Collings PJ, Castellanos L (1999) J Am Chem Soc 121:79

    Google Scholar 

  5. Verbiest T, Elshocht SV, Kauranen M, Hellemans L, Snauwaert J, Nuckolls C, Katz TJ, Persoons A (1998) Science 282:913

    Article  CAS  Google Scholar 

  6. Nuckolls C, Katz TJ (1998) J Am Chem Soc 120:9541

    Article  CAS  Google Scholar 

  7. Rybáček J, Huerta-Angeles G, Kollárovič A, Stará IG, Starý I, Rahe P, Nimmrich M, Kühnle A (2011) Eur J Org Chem 2011:853

    Article  Google Scholar 

  8. Kaseyama T, Furumi S, Zhang X, Tanaka K, Takeuchi M (2011) Angew Chem Int Ed 50:3684

    Article  CAS  Google Scholar 

  9. Owens L, Thilgen C, Diederich F, Knobler CB (1993) Helv Chim Acta 76:2757

    Article  CAS  Google Scholar 

  10. Murguly E, McDonald R, Branda NR (2000) Org Lett 2:3169

    Article  CAS  Google Scholar 

  11. Nakano K, Oyama H, Nishimura Y, Nakasako S, Nozaki K (2012) Angew Chem Int Ed 51:695

    Article  CAS  Google Scholar 

  12. Hatakeyama T, Hashimoto S, Oba T, Nakamura M (2012) J Am Chem Soc 134:19600

    Article  CAS  Google Scholar 

  13. Waghray D, Cloet A, Van Hecke K, Mertens SFL, De Feyter S, Van Meervelt L, Van der Auweraer M, Dehaen W (2013) Chem Eur J 19:12077

    Article  CAS  Google Scholar 

  14. Sakai H, Shinto S, Araki Y, Wada T, Sakanoue T, Takenobu T, Hasobe T (2014) Chem Eur J 20:10099

    Article  CAS  Google Scholar 

  15. (a) Sudhakar A, Katz TJ, Yang BW (1986) J Am Chem Soc 108:2790; (b) Katz TJ, Sudhakar A, Teasley MF, Gilbert AM, Geiger WE, Robben MP, Wuensch M, Ward MD (1993) J Am Chem Soc 115:3182; (c) Gilbert AM, Katz TJ, Geiger WE, Robben MP, Rheingold AL (1993) J Am Chem Soc 115:3199

    Google Scholar 

  16. (a) Dai Y, Katz TJ, Nichols DA (1996) Angew Chem Int Ed 35:2109; (b) Dai Y, Katz TJ (1997) J Org Chem 62:1274

    Google Scholar 

  17. Fox JM, Lin D, Itagaki Y, Fujita T (1998) J Org Chem 63:2031

    Article  CAS  Google Scholar 

  18. Takahira Y, Sugiura H, Yamaguchi M (2006) J Org Chem 71:763

    Article  CAS  Google Scholar 

  19. (a) Sugiura H, Nigorikawa Y, Saiki Y, Nakamura K, Yamaguchi M (2004) J Am Chem Soc 126:14858; (b) Yamaguchi M (2011) J Synth Org Chem Jpn 69:17

    Google Scholar 

  20. Anger E, Iida H, Yamaguchi T, Hayashi K, Kumano D, Crassous J, Vanthuyne N, Roussel C, Yashima E (2014) Polym Chem 5:4909

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Nozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Akiyama, M., Nakano, K., Nozaki, K. (2015). Higher-Order π-Electron Systems Based on Helicene Molecules. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_3

Download citation

Publish with us

Policies and ethics