Skip to main content

Recent Advances in the Chemistry of Phthalocyanines as Functional Chromophores

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Phthalocyanine (Pc), a conventional dyestuff exhibiting vivid blue or green color, has been utilized as a functional molecule for application in a variety of fields due to its excellent optical and electrochemical properties. Creation of novel π-conjugated systems based on the structure of Pc with the aim of further developing unique properties has, therefore, been of a prime importance. Despite the over a hundred-year history of phthalocyanine chemistry, progress in this regard has been fairly limited mainly due to the problems inherent in the synthesis of Pc. The authors have pioneered this research area by focusing on the control of the optical properties in the visible and near-infrared regions by (1) creation of the novel π-conjugated systems and (2) introduction of perturbation that is as simple as possible to the electronic structures and have reported a variety of unprecedented Pc analogues. Considerable attention has also been focused on the structure-optical property relationships of these novel Pc compounds. This chapter summarizes the contribution of the authors to the recent advances in the chemistry of phthalocyanine as functional chromophore systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook, vol 15–20. Academic Press, San Diego; (b) Leznoff CC, Lever ABP (eds) (1989–1996) Phthalocyanines: properties and applications, vol 1–4. Wiley-VCH, New York; (c) McKeown NB (1998) In: Phthalocyanine materials: synthesis, structure and function. Cambridge University Press, Cambridge; (d) Kobayashi N, Fukuda T (2006) In: Kim S (ed) Functional dyes. Elsevier, Oxford

    Google Scholar 

  2. Braun A, Tcherniac J (1907) Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Ber Dtsch Chem Ges 40:2709–2714

    Article  CAS  Google Scholar 

  3. (a) Linstead RP, Rydon HN (1934) Investigation of the olefinic acids. Part XV. The effect of peroxides on the orientation of the addition of hydrogen bromide to vinyl- and allyl-acefic acids. J Chem Soc 2001–2003; (b) Linstead RP (1934) Phthalocyanines. Part I. A new type of synthetic colouring matters. J Chem Soc 1016–1017; (c) Dent CE, Linstead RP, Lowe AR (1934) Phthalocyanines. Part VI. The structure of the phthalocyanines. J Chem Soc 1033–1039; (d) Dent CE, Linstead RP (1934) Phthalocyanines. Part IV. Copper phthalocyanines. J Chem Soc 1027–1031; (e) Byrne GT, Linstead RP, Lowe AR (1934) Phthalocyanines. Part II. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide. J Chem Soc 1017–1022

    Google Scholar 

  4. Robertson JM (1936) An X-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound. J Chem Soc 11951209

    Google Scholar 

  5. Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook, vol 1–10. Academic Press, San Diego

    Google Scholar 

  6. (a) Gouterman M (1959) Study of the effects of substitution on the absorption spectra of porphin. J Chem Phys 30:1139–1161; (b) Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    Google Scholar 

  7. Fukuda T, Kobayashi N (2010) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 9. World Scientific, Singapore

    Google Scholar 

  8. Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook, vol 13. Academic Press, San Diego

    Google Scholar 

  9. (a) Sessler JL, Weghorn SJ (1997) Expanded, contracted & isomeric porphyrins. Pergamon, Oxford; (b) Sessler JL, Seidel D (2003) Synthetic expanded porphyrin chemistry. Angew Chem Int Ed 42:5134–5175

    Google Scholar 

  10. Sugita I, Shimizu S, Fukuda T, Kobayashi N (2013) Nickel and palladium complexes of seco-tribenzoporphyrazines derived from one-pot condensation of 1,3–diminoisoindoline. Tetrahedron Lett 54:1599–1601

    Article  CAS  Google Scholar 

  11. Nemykin VN, Polshyna AE, Makarova EA, Kobayashi N, Lukyanets EA (2012) Unexpected formation of the nickel seco-tribenzoporphyrazine with a tribenzotetraazachlorin-type absorption spectrum. Chem Commun 48:3650–3652

    Article  CAS  Google Scholar 

  12. Linstead RP, Whalley M (1952) Conjugated macrocycles. Part XXII. Tetrazaporphin and its metallic derivatives. J Chem Soc 4839–4846

    Google Scholar 

  13. Fukuda T, Kobayashi N (2008) Hydrogenated tetraazaporphyrins - old but new core-modified phthalocyanine analogues. Dalton Trans 4685–4704

    Google Scholar 

  14. (a) Mani NS, Beall LS, White AJP, Williams DJ, Barrett AGM, Hoffman BM (1994) Serendipitous desymmetrisation during porphyrazine synthesis - an X-ray crystallographic study of 2,3,7,8,12,13,17,18-octakis(Dimethylamino)-2-secoporphyrazine-2,3-dione. J Chem Soc Chem Commun 1943–1944; (b) Montalban AG, Lange SJ, Beall LS, Mani NS, Williams DJ, White AJP, Barrett AGM, Hoffman BM (1997) Seco-porphyrazines: synthetic, structural, and spectroscopic investigations. J Org Chem 62:9284–9289

    Google Scholar 

  15. MacCragh A, Koski WS (1965) The phthalocyanine of gold. J Am Chem Soc 87:2496–2497

    Article  CAS  Google Scholar 

  16. Wong EWY, Miura A, Wright MD, He Q, Walsby CJ, Shimizu S, Kobayashi N, Leznoff DB (2012) Gold(II) phthalocyanine revisited: synthesis and spectroscopic properties of Gold(III) phthalocyanine and an unprecedented ring-contracted phthalocyanine analogue. Chem Eur J 18:12404–12410

    Google Scholar 

  17. Fernandez-Lazaro F, Torres T, Hauschel B, Hanack M (1998) Hemiporphyrazines as targets for the preparation of molecular materials: synthesis and physical properties. Chem Rev 98:563–575

    Article  CAS  Google Scholar 

  18. Shimizu S, Zhu H, Kobayashi N (2010) Subazaphenalenephthalocyanine: a subphthalocyanine analogue bearing a six-membered ring unit. Chem Eur J 16:11151–11159

    Article  CAS  Google Scholar 

  19. (a) Shimizu S, Zhu H, Kobayashi N (2011) Azepiphthalocyanine-an unprecedented large twist of a Π-conjugation system upon core-odification with a seven-membered ring unit. Chem Commun 47:3072–3074; (b) Shimizu S, Uemura K, Zhu H, Kobayashi N (2012) Core-modified phthalocyanine analogues with a seven-membered ring unit in place of a five-membered ring unit. Tetrahedron Lett 53:579–581

    Google Scholar 

  20. (a) Fukuda T, Makarova EA, Luk’yanets EA, Kobayashi N (2004) Synthesis and spectroscopic and electrochemical studies of novel benzo- or 2,3-Naphtho-fused tetraazachlorins, bacteriochlorins, and isobacteriochlorins. Chem Eur J 10:117–133; (b) Kobayashi N, Fukuda T (2002) Mono-aromatic ring-fused versus adjacently di-aromatic ring-fused tetraazaporphyrins: regioselective synthesis and their spectroscopic and electrochemical properties. J Am Chem Soc 124:8021–8034; (c) Kobayashi N, Miwa H, Nemykin VN (2002) Adjacent versus opposite type di-aromatic ring-fused phthalocyanine derivatives: synthesis, spectroscopy, electrochemistry, and molecular orbital calculations. J Am Chem Soc 124:8007–8020; (d) Kobayashi N, Mack J, Ishii K, Stillman MJ (2002) Electronic structure of reduced symmetry peripheral fused-ring-substituted phthalocyanines. Inorg Chem 41:5350–5363; (e) Miwa H, Ishii K, Kobayashi N (2004) Electronic structures of zinc and palladium tetraazaporphyrin derivatives controlled by fused benzo rings. Chem Eur J 10:4422–4435

    Google Scholar 

  21. (a) Shimizu S, Kobayashi N (2014) Structurally-modified subphthalocyanines: molecular design towards realization of expected properties from the electronic structure and structural features of subphthalocyanine. Chem Commun 50:6949–6966; (b) Zhu H, Shimizu S, Kobayashi N (2010) Subazaphenalenephthalocyanine: a subphthalocyanine analogue bearing a six-membered ring unit. Angew Chem Int Ed 49:8000–8003; (c) Shimizu S, Nakano S, Kojima A, Kobayashi N (2014) A core-expanded subphthalocyanine analogue with a significantly distorted conjugated surface and unprecedented properties. Angew Chem Int Ed 53:2408–2412

    Google Scholar 

  22. Saito S, Osuka A (2011) Expanded porphyrins: intriguing structures, electronic properties, and reactivities. Angew Chem Int Ed 50:4342–4373

    Article  CAS  Google Scholar 

  23. Bloor JE, Schlabitz J, Walden CC, Demerdac A (1964) Organic complexes of uranium: Part I. The synthesis and spectrum of uranyl phthalocyanine. Can J Chem 42:2201–2208

    Article  CAS  Google Scholar 

  24. (a) Marks TJ, Stojakovic DR (1975) Macrocycle contraction reactions of 5,35 : 14,19-Diimino-7,12 : 21,26 : 28,33-trinitrilopentabenzo [c,h,m,r,w][1,6,11,16,21]pentaazacyclopentacosinato-dioxouranium(VI). JCS Chem Commun 28–29; (b) Day VW, Marks TJ, Wachter WA (1975) Large metal ion-centered template reactions. Uranyl complex of cyclopentakis(2-iminoisoindoline). J Am Chem Soc 97:4519–4527; (c) Marks TJ, Stojakovic DR (1978) J Am Chem Soc 100:1695–1705; (d) Cuellar EA, Marks TJ (1981) Large metal ion-centered template reactions. Chemical and spectral studies of the “superphthalocyanine” dioxocyclopentakis(1-iminoisoindolinato)uranium(VI) and its derivatives. Inorg Chem 20:3766–3770

    Google Scholar 

  25. Furuyama T, Ogura Y, Yoza K, Kobayashi N (2012) Superazaporphyrins: meso-pentaazapentaphyrins and one of their low-symmetry derivatives. Angew Chem Int Ed 51:11110–11114

    Article  CAS  Google Scholar 

  26. Matsushita O, Derkacheva VM, Muranaka A, Shimizu S, Uchiyama M, Luk’yanets EA, Kobayashi N (2012) Rectangular-shaped expanded phthalocyanines with two central metal atoms. J Am Chem Soc 134:3411–3418

    Google Scholar 

  27. Ficken GE, Linstead RP, Stephen E, Whalley M (1958) Conjugated macrocycles. Part XXXI. catalytic hydrogenation of tetrazaporphins, with a note on its stereochemical course. J Chem Soc 3879–3886

    Google Scholar 

  28. Kopranenkov VN, Goncharova LS, Lukyanets EA (1979) Cyano-substituted porphyrazines. Zh Obshch Khim 49:1408–1412

    CAS  Google Scholar 

  29. Shimizu S, Haseba Y, Yamazaki M, Kumazawa G, Kobayashi N (2014) Control of chromophore symmetry by positional isomerism of peripheral substituents. Chem Eur J 20:4822–4828

    Article  CAS  Google Scholar 

  30. (a) Mack J, Stillman MJ, Kobayashi N (2007) Application of MCD spectroscopy to porphyrinoids. Coord Chem Rev 251:429–453; (b) Mack J, Kobayashi N, Shen Z (2012) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 23, Chap. 109. World Scientific, Singapore; (c) Kobayashi N, Muranaka A, Mack J (2012) Circular dichroism and magnetic circular dichroism spectroscopy for organic chemists. Royal Society of Chemistry, Cambridge

    Google Scholar 

  31. (a) Kaito A, Nozawa T, Yamamoto T, Hatano M, Orii Y (1977) LCAO MO SCF Π-electron calculations on the magnetic circular dichroism of porphin, protoporphyrin, and porphyrin. Chem Phys Lett 52:154–160; (b) Tajiri A, Winkler J (1983) Magnetic circular-dichroism and molecular-orbital studies on condensed thiadiazoles. Z Naturforsch A 38:1263–1269

    Google Scholar 

  32. (a) Furuyama T, Satoh K, Kushiya T, Kobayashi N (2013) Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm. J Am Chem Soc 136:765–776; (b) Kobayashi N, Furuyama T, Satoh K (2011) Rationally designed phthalocyanines having their main absorption band beyond 1000 nm. J Am Chem Soc 133:19642–19645

    Google Scholar 

  33. Furuyama T, Yoshida T, Hashizume D, Kobayashi N (2014) Phosphorus(v) tetraazaporphyrins: porphyrinoids showing an exceptionally strong CT band between the soret and Q bands. Chem Sci 5:2466–2474

    Article  CAS  Google Scholar 

  34. (a) Hanack M, Dini D (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 18, Chap. 114. Academic Press, San Diego; (b) Weiss R, Fischer J (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 16, Chap. 105. Academic Press, San Diego; (c) Buchler JW, Ng DKP (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 3, Chap. 20. Academic Press, San Diego

    Google Scholar 

  35. (a) Marks TJ (1985) Electrically conductive metallomacrocyclic assemblies. Science 227:881–889; (b) Dirk CW, Inabe T, Schoch KF, Marks TJ (1983) Metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. chemical, structural, oxidation state, transport, magnetic, and optical properties of halogen-doped [M(phthalocyaninato)O], macromolecules, where M = Si, Ge, and Sn. J Am Chem Soc 105:1539–1550; (c) Diel BN, Inabe T, Lyding JW, Schoch KF, Kannewurf CR, Marks TJ (1983) Cofacial assembly of partially oxidized metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular-solids - chemical and architectural properties of the face-to-face polymers [M(Phthalocyaninato)O]N, where M = Si, Ge, and Sn. J Am Chem Soc 105:1551–1567; (d) Dewulf DW, Leland JK, Wheeler BL, Bard AJ, Batzel DA, Dininny DR, Kenney ME (1987) Isolation, spectroscopic properties, and electrochemical properties of two oligomeric silicon phthalocyanines. Inorg Chem 26:266–270

    Google Scholar 

  36. (a) Ferencz A, Neher D, Schulze M, Wegner G, Viaene L, Deschryver FC (1995) Synthesis and spectroscopic properties of phthalocyanine dimers in solution. Chem Phys Lett 245:23–29; (b) OddosMarcel L, Madeore F, Bock A, Neher D, Ferencz A, Rengel H, Wagner G, Kryschi C, Trommsdorff HP (1996) Electronic states and relaxation dynamics of silicon phthalocyanine dimers. J Phys Chem 100:11850–11856

    Google Scholar 

  37. Kleinwachter J, Hanack M (1997) Rotational isomers in stacked macrocycles: synthesis and spectroscopic properties of peripherally substituted (μ-Oxo)bis(phthalocyaninatosilicon) compounds. J Am Chem Soc 119:10684–10695

    Article  Google Scholar 

  38. (a) Ciliberto E, Doris KA, Pietro WJ, Reisner GM, Ellis DE, Fragala I, Herbstein FH, Ratner MA, Marks TJ (1984) Π-Π interactions and bandwidths in “molecular metals”. A chemical, structural, photoelectron spectroscopic, and Hartree-Fock-Slater study of monomeric and cofacially joined dimeric silicon phthalocyanines. J Am Chem Soc 106:7748–7761; (b) Li ZY, Lieberman M (2001) Axial reactivity of soluble silicon(IV) phthalocyanines. Inorg Chem 40:932–939

    Google Scholar 

  39. Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res 20:55–70

    Article  CAS  Google Scholar 

  40. (a) Ishikawa N, Ohno O, Kaizu Y, Kobayashi H (1992) Localized orbital study on the electronic-structure of phthalocyanine dimers. J Phys Chem 96:8832–8839; (b) Ishikawa N (2001) Electronic structures and spectral properties of double- and triple-decker phthalocyanine complexes in a localized molecular orbital view. J Porphyrins Phthalocyanines 5:87–101

    Google Scholar 

  41. Oniwa K, Shimizu S, Shiina Y, Fukuda T, Kobayashi N (2013) A μ-oxo hetero dimer of silicon phthalocyanine and naphthalocyanine. Chem Commun 49:8341–8343

    Article  CAS  Google Scholar 

  42. Fukuda T, Biyajima T, Kobayashi N (2010) A discrete quadruple-decker phthalocyanine. J Am Chem Soc 132:6278–6279

    Article  CAS  Google Scholar 

  43. (a) Fukuda T, Kuroda W, Ishikawa N (2011) Observation of long-range f-f interactions between two f-electronic systems in quadruple-decker phthalocyanines. Chem Commun 47:11686–11688; (b) Fukuda T, Matsumura K, Ishikawa N (2013) Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers. J Phys Chem A 117:10447–10454

    Google Scholar 

  44. (a) Wang H, Qian K, Wang K, Bian Y, Jiang J, Gao S (2011) Sandwich-type Tetrakis(phthalocyaninato) Dysprosium-Cadmium Quadruple-Decker SMM. Chem Commun 47:9624–9626; (b) Wang H, Kobayashi N, Jiang J (2012) New sandwich-type phthalocyaninato-metal quintuple-decker complexes. Chem Eur J 18:1047–1049; (c) Wang H, Qi D, Xie Z, Cao W, Wang K, Shang H, Jiang J (2013) A sandwich-type phthalocyaninato metal sextuple-decker complex: synthesis and NLO properties. Chem Commun 49:889–891

    Google Scholar 

  45. Fukuda T, Hata K, Ishikawa N (2012) Observation of exceptionally low-lying Π–Π* excited states in oxidized forms of quadruple-decker phthalocyanine complexes. J Am Chem Soc 134:14698–14701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soji Shimizu or Nagao Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Shimizu, S., Kobayashi, N. (2015). Recent Advances in the Chemistry of Phthalocyanines as Functional Chromophores. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_16

Download citation

Publish with us

Policies and ethics