Skip to main content

Synthesis of Novel Porphyrinoids from Dipyrrins

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Most syntheses of meso-substituted porphyrinoid rely on acid-catalyzed condensation of pyrrole segments with aldehyde units followed by oxidation. This standard procedure is convenient but generally is low yielding. However, modern synthetic methodologies would offer an expeditious route to several intriguing porphyrinoids. In particular, the metal template strategy using dipyrrin metal complexes is effective to construct porphyrin-like cyclic π-conjugated systems, which are otherwise difficult to access by the conventional methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kadish KM, Smith KM, Guilard R(eds) (2010) Handbook of porphyrin science, vol 1–35. World Scientific Publishing, Singapore

    Google Scholar 

  2. Wood TE, Thompson A (2007) Advances in the chemistry of dipyrrins and their complexes. Chem Rev 107(5):1831–1861. doi:10.1021/cr050052c

    Article  CAS  Google Scholar 

  3. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107(11):4891–4932

    Article  CAS  Google Scholar 

  4. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47(7):1184–1201

    Article  CAS  Google Scholar 

  5. Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12(23):3774–3791. doi:10.1039/C3OB42554A

    Article  CAS  Google Scholar 

  6. Lu H, Mack J, Yang Y, Shen Z (2014) Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem Soc Rev 43(13):4778–4823. doi:10.1039/C4CS00030G

    Article  CAS  Google Scholar 

  7. Sakida T, Yamaguchi S, Shinokubo H (2011) Metal-mediated synthesis of antiaromatic porphyrinoids from a BODIPY precursor. Angew Chem Int Ed 50(10):2280–2283. doi:10.1002/anie.201006314

    Article  CAS  Google Scholar 

  8. Tahara K, Tobe Y (2006) Molecular loops and belts. Chem Rev 106(12):5274–5290. doi:10.1021/cr050556a

    Article  CAS  Google Scholar 

  9. Zhang W, Moore JS (2006) Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. Angew Chem Int Ed 45(27):4416–4439. doi:10.1002/anie.200503988

    Article  CAS  Google Scholar 

  10. Spitler EL, Johnson CA, Haley MM (2006) Renaissance of annulene chemistry. Chem Rev 106(12):5344–5386. doi:10.1021/cr050541c

    Article  CAS  Google Scholar 

  11. Wolfe JP, Wagaw S, Marcoux J-F, Buchwald SL (1998) Rational development of practical catalysts for aromatic carbon − nitrogen bond formation. Acc Chem Res 31(12):805–818. doi:10.1021/ar9600650

    Article  CAS  Google Scholar 

  12. Hartwig JF (1998) Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew Chem Int Ed 37(15):2046–2067

    Article  CAS  Google Scholar 

  13. Hartwig JF (2008) Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc Chem Res 41(11):1534–1544. doi:10.1021/ar800098p

    Article  CAS  Google Scholar 

  14. Surry DS, Buchwald SL (2008) Biaryl phosphane ligands in palladium-catalyzed amination. Angew Chem Int Ed 47(34):6338–6361. doi:10.1002/anie.200800497

    Article  CAS  Google Scholar 

  15. Johnson AW, Kay IT, Rodrigo R (1963) 2,2′-bipyrrolic macrocyclic ring systems. J Chem Soc 2336–2342. doi:10.1039/JR9630002336

  16. Horie M, Hayashi Y, Yamaguchi S, Shinokubo H (2012) Synthesis of nickel(II) azacorroles by Pd-catalyzed amination of α,α′-dichlorodipyrrin NiII complex and their properties. Chem Eur J 18(19):5919–5923. doi:10.1002/chem.201200485

    Article  CAS  Google Scholar 

  17. Matano Y, Shibano T, Nakano H, Imahori H (2012) Nickel(II) and copper(II) complexes of beta-unsubstituted 5,15-diazaporphyrins and pyridazine-fused diazacorrinoids: metal-template syntheses and peripheral functionalizations. Chem Eur J 18(20):6208–6216. doi:10.1002/chem.201200463

    Article  CAS  Google Scholar 

  18. Matano Y, Shibano T, Nakano H, Kimura Y, Imahori H (2012) Free base and metal complexes of 5,15-diaza-10,20-dimesitylporphyrins: synthesis, structures, optical and electrochemical properties, and aromaticities. Inorg Chem 51(23):12879–12890. doi:10.1021/ic301835c

    Article  CAS  Google Scholar 

  19. Kamiya H, Kondo T, Sakida T, Yamaguchi S, Shinokubo H (2012) meso-thiaporphyrinoids revisited: missing of sulfur by small metals. Chem Eur J 18(50):16129–16135. doi:10.1002/chem.201203255

    Article  CAS  Google Scholar 

  20. Sakow D, Böker B, Brandhorst K, Burghaus O, Bröring M (2013) 10-heterocorroles: ring-contracted porphyrinoids with fine-tuned aromatic and metal-binding properties. Angew Chem Int Ed 52(18):4912–4915. doi:10.1002/anie.201300757

    Article  CAS  Google Scholar 

  21. Broadhurst MJ, Grigg R, Johnson AW (1970) Preparation of some sulphur-containing polypyrrolic macrocycles – sulphur extrusion from a meso-thiaphlorin. J Chem Soc D 13:807–809. doi:10.1039/c29700000807

    Article  Google Scholar 

  22. Broadhurst MJ, Grigg R, Johnson AW (1972) Sulfur extrusion reactions applied to synthesis of corroles and related systems. J Chem Soc Perkin Trans 1(9–10):1124–1135. doi:10.1039/p19720001124

    Article  Google Scholar 

  23. Wachi N, Kondo T, Ito S, Hiroto S, Shin J-Y, Shinokubo H (2014) Synthesis, reactivity, and property of 5,15-dithiaporphyrin copper(II) complex. J Porphyrins Phthalocyanines 18(8–9):675–678

    Google Scholar 

  24. Bröring M, Köhler S, Kleeberg C (2008) Norcorrole: observation of the smallest porphyrin variant with a N4 core. Angew Chem Int Ed 47(30):5658–5660. doi:10.1002/anie.200801196

    Article  Google Scholar 

  25. Ito T, Hayashi Y, Shimizu S, Shin J-Y, Kobayashi N, Shinokubo H (2012) Gram-scale synthesis of Nickel(II) norcorrole: the smallest antiaromatic porphyrinoid. Angew Chem Int Ed 51(34):8542–8545. doi:10.1002/anie.201204395

    Article  CAS  Google Scholar 

  26. Broring M, Brégier F, Cónsul Tejero E, Hell C, Holthausen MC (2007) Revisiting the electronic ground state of copper corroles. Angew Chem Int Ed 46(3):445–448. doi:10.1002/anie.200603676

    Article  Google Scholar 

  27. Kira M, Ishida S, Iwamoto T, Kabuto C (1999) The first isolable dialkylsilylene. J Am Chem Soc 121(4–1):9722–9723. doi:10.1021/ja9925305

    Article  CAS  Google Scholar 

  28. Kira M, Iwamoto T, Ishida S (2007) A helmeted dialkylsilylene. Bull Chem Soc Jpn 80(2):258–275. doi:10.1246/bcsj.80.258

    Article  CAS  Google Scholar 

  29. Kira M (2010) An isolable dialkylsilylene and its derivatives. A step toward comprehension of heavy unsaturated bonds. Chem Commun 46(17):2893–2903. doi:10.1039/C002806A

    Article  CAS  Google Scholar 

  30. Fukuoka T, Uchida K, Sung YM, Shin J-Y, Ishida S, Lim JM, Hiroto S, Furukawa K, Kim D, Iwamoto T, Shinokubo H (2014) Near-IR absorbing nickel(II) porphyrinoids prepared by regioselective insertion of silylenes into antiaromatic nickel(II) norcorrole. Angew Chem Int Ed 53(6):1506–1509. doi:10.1002/anie.201309921

    Article  CAS  Google Scholar 

  31. Kido H, Shin J-Y, Shinokubo H (2013) Selective synthesis of a [32]octaphyrin(1.0.1.0.1.0.1.0) bis(palladium) complex by a metal-templated strategy. Angew Chem Int Ed 52(51):13727–13730. doi:10.1002/anie.201306905

    Article  CAS  Google Scholar 

  32. Shin J-Y, Yamada T, Yoshikawa H, Awaga K, Shinokubo H (2014) An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew Chem Int Ed 53(12):3096–3101. doi:10.1002/anie.201310374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Shinokubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Shinokubo, H. (2015). Synthesis of Novel Porphyrinoids from Dipyrrins. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_14

Download citation

Publish with us

Policies and ethics