Skip to main content

Bacterial Antizyme

  • Chapter
  • First Online:
Polyamines

Abstract

A 22-kDa protein (P22), a direct counterpart to mammalian ornithine decarboxylase antizyme (ODC-AZ), was found in Selenomonas ruminantium, a gram-negative and anaerobic bacterium from sheep rumen. P22 does not degrade lysine/ornithine decarboxylase (LDC/ODC) but does bind to the AZ-binding region of LDC/ODC and triggers ATP-dependent proteolysis. This proteolytic system is totally compatible with the factors implicated in the AZ-mediated regulatory systems of mammalian ODC, such as mouse AZ or 26S proteasomes. Surprisingly, P22 is an L10 protein, a component of the large subunit of the bacterial ribosome. Interestingly, our research on bacterial antizyme was originally initiated from the study on the peptidoglycan of S. ruminantium, which contained covalently linked cadaverine, representing quite unusual characteristic among bacterial cell wall. In this chapter, we describe the chemical structure and biological function of the cadaverine-containing peptidoglycan of S. ruminantium, and the cellular biosynthesis of cadaverine by LDC/ODC and its P22 (=L10)-mediated regulation. In addition, we briefly refer to the phylogenetic distribution of LDC/ODC and ribosomal L10 among bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batty M, Nakai H (2008) Trans-targeting of the phage Mu repressor is promoted by conformational changes that expose its ClpX recognition determinant. Mol Microbiol 67:920–933

    Article  Google Scholar 

  • Diaconu M, Kothe U, Schlünzen F et al (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121:991–1004

    Article  CAS  PubMed  Google Scholar 

  • Ghoda L, van Daalen Wetters T, Macrae M et al (1989) Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science 243:1493–1495

    Article  CAS  PubMed  Google Scholar 

  • Grishin NV, Phillips MA, Goldsmith EJ (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylase. Protein Sci 4:1291–1304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi S, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem 21:27–30

    Article  CAS  Google Scholar 

  • Kamio Y, Takahashi H (1980) Outer membrane proteins and cell surface structure of Selenomonas ruminantium. J Bacteriol 141:899–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamio Y, Terawaki Y (1983) Purification and properties of Selenomonas ruminantium lysine decarboxylase. J Bacteriol 153:658–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamio Y, Itoh Y, Terawaki Y (1981) Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the d-glutamic acid residue of peptidoglycan. J Bacteriol 146:49–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamio Y, Pösö H, Terawaki Y et al (1986) Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium. J Biol Chem 261:6585–6589

    CAS  PubMed  Google Scholar 

  • Kojima S, Kaneko J, Abe N et al (2011) Cadaverine covalently linked to the peptidoglycan serves as the correct constituent for the anchoring mechanism between the outer membrane and the peptidoglycan in Selenomonas ruminantium. J Bacteriol 193:2347–2350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki H, Nishimura Y, Yasuda S et al (1978) Murein-lipoprotein of Escherichia coli: a protein involved in the stabilization of bacterial cell envelope. Mol Gen Genet 167:1–9

    CAS  PubMed  Google Scholar 

  • Takatsuka Y, Kamio Y (2004) Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer. Biosci Biotechnol Biochem 68:1–19

    Article  CAS  PubMed  Google Scholar 

  • Takatsuka Y, Onoda M, Sugiyama T et al (1999a) Novel characteristics of Selenomonas uminantium lysine decarboxylase capable of decarboxylating both l-lysine and l-ornithine. Biosci Biotechnol Biochem 63:1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Takatsuka Y, Tomita T, Kamio Y (1999b) Identification of the amino acid residues conferring substrate specificity upon Selenomonas ruminantium lysine decarboxylase. Biosci Biotechnol Biochem 63:1843–1846

    Article  CAS  PubMed  Google Scholar 

  • Takatsuka Y, Yamaguchi Y, Ono M et al (2000) Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylase from eukaryotes. J Bacteriol 182:6732–6741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi Y, Takatsuka Y, Kamio Y (2002) Identification of a 22-kDa protein required for the degradation of Selenomonas ruminantium lysine decarboxylase by ATP-dependent protease. Biosci Biotechnol Biochem 66:1431–1434

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Takatsuka Y, Matsufuji S et al (2006) Characterization of a counterpart to mammalian ornithine decarboxylase antizyme in prokaryotes. J Biol Chem 281:3995–4001

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Takatsuka Y, Kamio Y (2008) Two segments in bacterial antizyme P22 are essential for binding and enhance degradation of lysine/ornithine decarboxylase in Selenomonas ruminantium. J Bacteriol 190:442–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yem DW, Wu HC (1978) Physiological characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein. J Bacteriol 133:1419–1426

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all those who have supported us in our recovery and continued research following the crisis that occurred on 11 March 2011. We wish to express our sincere and heartfelt concern for the people still suffering as a result of the disaster, and wish them full and early recovery with fondest regards. We are also grateful to the director of the Center for Academic Publications Japan for permission to reproduce some sentences from the following paper: Journal of Nutritional Science and Vitaminology 58:153–156 (2012) by S. Kojima and Y. Kamio. Our works cited in this article were supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Kamio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kamio, Y., Yamaguchi, Y., Kaneko, J. (2015). Bacterial Antizyme. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_8

Download citation

Publish with us

Policies and ethics