Skip to main content

Long-Chain and Branched Polyamines in Thermophilic Microbes

  • Chapter
  • First Online:
Polyamines

Abstract

Long-chain and/or branched polyamines such as N 4-aminopropylspermidine [3(3)4] (abbreviation for the number of methylene CH2 chain units between NH2, NH, N, or N+), N 4-bis(aminopropyl)spermidine [3(3)(3)4], and tetrakis(3-aminopropyl)ammonium [3(3)(3)3] are polycations of biotic origin that are only found in thermophiles. The thermophilic bacterium Thermus thermophilus and the hyperthermophilic archaeon Thermococcus kodakarensis synthesize a polyamine, spermidine, via conversion of arginine to agmatine (a step catalyzed by arginine decarboxylase), aminopropylation of agmatine to N 1-aminopropylagmatine (catalyzed by aminopropyl transferase), and hydrolysis of N 1-aminopropylagmatine to spermidine by N 1-aminopropylagmatine ureohydrolase. It is noteworthy that thermophiles synthesize spermidine without producing putrescine as an intermediate. Spermidine can be modified to produce further polyamides such as N 4-aminopropylspermidine [3(3)4] and then N 4-bis(aminopropyl)spermidine by an enzyme coded by the TK1691 gene in T. kodakarensis. TK1691 and its orthologues are found in (hyper)thermophilic Archaea and Bacteria, but not in mesophilic Bacteria. TK1691 is a recently characterized aminopropyl transferase involved in the synthesis of branched polyamines, which are essential for the stabilization and structural protection of nucleic acids and which enhance polypeptide synthesis at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bale S, Ealick SE (2010) Structural biology of S-adenosylmethionine decarboxylase. Amino Acids 38:451–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cacciapuoti G, Porcelli M, De Rosa M, Gambacorta A, Bertoldo C, Zappia V (1991) S-Adenosylmethionine decarboxylase from the thermophilic archaebacterium Sulfolobus solfataricus. Purification, molecular properties and studies on the covalently bound pyruvate. Eur J Biochem 199:395–400

    Article  CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V et al (2007) The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 189:6057–6067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda W, Morimoto N, Imanaka T, Fujiwara S (2008) Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol Lett 287:113–120

    Article  CAS  PubMed  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giles TN, Graham DE (2008) Crenarchaeal arginine decarboxylase evolved from an S-adenosylmethionine decarboxylase enzyme. J Biol Chem 283:25829–25838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham DE, Xu H, White RH (2002) Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis. J Biol Chem 277:23500–23507

    Article  CAS  PubMed  Google Scholar 

  • Hamana K, Matsuzaki S (1985) Further study on polyamines in primitive unicellular eukaryotic algae. J Biochem 97:1311–1315

    CAS  PubMed  Google Scholar 

  • Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi Y, Kimura S, Numata T, Nakamura D, Yokogawa T, Ogata T et al (2010) Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat Chem Biol 6:277–282

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H et al (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim AD, Graham DE, Seeholzer SH, Markham GD (2000) S-Adenosylmethionine decarboxylase from the archaeon Methanococcus jannaschii: identification of a novel family of pyruvoyl enzymes. J Bacteriol 182:6667–6672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knott JM (2009) Biosynthesis of long-chain polyamines by crenarchaeal polyamine synthases from Hyperthermus butylicus and Pyrobaculum aerophilum. FEBS Lett 583:3519–3524

    Article  CAS  PubMed  Google Scholar 

  • Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Lu ZJ, Markham GD (2004) Catalytic properties of the archaeal S-adenosylmethionine decarboxylase from Methanococcus jannaschii. J Biol Chem 279:265–273

    Article  CAS  PubMed  Google Scholar 

  • Morimoto N, Fukuda W, Nakajima N, Masuda T, Terui Y, Kanai T et al (2010) Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 192:4991–5001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohnuma M, Terui Y, Tamakoshi M, Mitome H, Niitsu M, Samejima K et al (2005) N1-Aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus. J Biol Chem 280:30073–30082

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Hidese R, Fukuda W, Niitsu M, Takao K, Horai Y, Umezawa N, Higuchi T, Oshima T, Yoshikawa Y, Imanaka T, Fujiwara S (2014) Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles. J Bacteriol 196:1866–1876

    Google Scholar 

  • Rhee HJ, Kim EJ, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11:685–703

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Atomi H (2011) Novel metabolic pathways in Archaea. Curr Opin Microbiol 14:307–314

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91:17–30

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tolbert WD, Graham DE, White RH, Ealick SE (2003) Pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii: crystal structures of the self-cleaved and S53A proenzyme forms. Structure 11:285–294

    Article  CAS  PubMed  Google Scholar 

  • Uzawa T, Hamasaki N, Oshima T (1993) Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extract. J Biochem (Tokyo) 114:478–486

    CAS  Google Scholar 

  • van Poelje PD, Snell EE (1990) Pyruvoyl-dependent enzymes. Annu Rev Biochem 59:29–59

    Article  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Lu CD (2007) Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. J Bacteriol 189:3945–3953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fukuda, W., Hidese, R., Fujiwara, S. (2015). Long-Chain and Branched Polyamines in Thermophilic Microbes. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_2

Download citation

Publish with us

Policies and ethics