Skip to main content

Abstract

18F-2-fluoro-2-deoxy-d-glucose (18F-FDG) is a tracer that can objectively evaluate neuronal activity in the brain and has been widely used in the research and diagnosis of Alzheimer’s disease (AD). The clinical diagnostic criteria for AD were revised in 2011. Along with magnetic resonance imaging, FDG-positron emission tomography (PET) has been shown to be an important research criteria as an objective biomarker for neuronal injury.

Typical FDG-PET findings in AD include reduced glucose metabolism in the parietotemporal association cortex, precuneus, and posterior cingulate. FDG-PET plays an important role in visually and quantitatively perceiving these types of findings; consequently, the certainty of the clinical diagnosis of AD can be improved, and differentiating between AD and non-Alzheimer’s dementia is also possible. Furthermore, FDG-PET may be used as a biomarker for early diagnosis of AD, at the mild cognitive impairment (MCI) or preclinical stages, in order to start medical or non-pharmacologic treatment and, subsequently, as a biomarker to determine treatment effects. This chapter focuses on previously collected evidence about the efficacy and practicality of FDG-PET in the diagnosis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertz E, Dienel GA. Energy metabolism in the brain. In: Dwyer DS, editor. Glucose metabolism in the brain. International review of neurobiology, vol. 51. San Diego, CA: Academic; 2002. p. 2–102.

    Google Scholar 

  2. Magistretti PJ. Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr. 2009;90(3):875S–80S.

    Article  CAS  PubMed  Google Scholar 

  3. Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977;29(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Erikson C, Brun A. Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia. 1996;7(3):128–34.

    CAS  PubMed  Google Scholar 

  5. Weiner MW, Veitch DP, Aisen PS, et al. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement. 2013;9(5):111–94.

    Article  Google Scholar 

  6. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34(7):939–44.

    Article  CAS  PubMed  Google Scholar 

  7. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining th preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet. 1994;344(8926):895.

    Article  CAS  PubMed  Google Scholar 

  11. Friedland RP, Brun A, Budinger TF. Pathological and positron emission tomographic correlations in Alzheimer’s disease [letter]. Lancet. 1985;1(8422):228.

    Article  CAS  PubMed  Google Scholar 

  12. Mielke R, Schroder R, Fink GR, et al. Regional cerebral glucose metabolism and postmortem pathology in Alzheimer’s disease. Acta Neuropathol. 1996;91(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  13. Herholz K, Schopphoff H, Schmidt M, et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med. 2002;43(1):21–6.

    PubMed  Google Scholar 

  14. Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging*. J Nucl Med. 2004;45(4):594–607.

    PubMed  Google Scholar 

  15. Ishii K, Sasaki M, Yamaji S, et al. Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998;9(6):317–22.

    Article  CAS  PubMed  Google Scholar 

  16. Mielke R, Herholz K, Grond M, et al. Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging. 1992;13(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sakamoto S, Ishii K, Sasaki M, et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. J Neurol Sci. 2002;200(1–2):27–32.

    Article  CAS  PubMed  Google Scholar 

  18. Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  19. Minoshima S, Frey KA, Koeppe RA, et al. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.

    CAS  PubMed  Google Scholar 

  20. Friston KJ, Ashburner J, Kiebel SJ, Nichols TE, Penny WD, editors. Statistical parametric mapping: the analysis of functional brain images. San Diego, CA: Academic; 2007.

    Google Scholar 

  21. Fazekas F, Alavi A, Chawluk JB, et al. Comparison of CT, MR, and PET in Alzheimer’s dementia and normal aging. J Nucl Med. 1989;30(10):1607–15.

    CAS  PubMed  Google Scholar 

  22. Kippenhan JS, Barker WW, Pascal S, et al. Evaluation of a neural-network classifier for PET scans of normal and Alzheimer’s disease subjects. J Nucl Med. 1992;33(8):1459–67.

    CAS  PubMed  Google Scholar 

  23. Azari NP, Pettigrew KD, Schapiro MB, et al. Early detection of Alzheimer’s disease: a statistical approach using positron emission tomographic data. J Cereb Blood Flow Metab. 1993;13(3):438–47.

    Article  CAS  PubMed  Google Scholar 

  24. Burdette JH, Minoshima S, Vander Borght T, et al. Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology. 1996;198(3):837–43.

    Article  CAS  PubMed  Google Scholar 

  25. Scheurich A, Muller MJ, Siessmeier T, et al. Validating the DemTect with 18-fluoro-2-deoxy-glucose positron emission tomography as a sensitive neuropsychological screening test for early Alzheimer disease in patients of a memory clinic. Dement Geriatr Cogn Disord. 2005;20(5):271–7.

    Article  PubMed  Google Scholar 

  26. Duara R, Barker W, Loewenstein D, et al. Sensitivity and specificity of positron emission tomography and magnetic resonance imaging studies in Alzheimer’s disease and multi-infarct dementia. Eur Neurol. 1989;29(3):9–15.

    Article  PubMed  Google Scholar 

  27. Herholz K, Adams R, Kessler J, et al. Criteria for the diagnosis of Alzheimer’s disease with positron emission tomography. Dementia. 1990;1:156–64.

    Google Scholar 

  28. Herholz K, Perani D, Salmon E, et al. Comparability of FDG PET studies in probable Alzheimer’s disease. J Nucl Med. 1993;34(9):1460–6.

    CAS  PubMed  Google Scholar 

  29. Szelies B, Mielke R, Herholz K, et al. Quantitative topographical EEG compared to FDG PET for classification of vascular and degenerative dementia. Electroencephalogr Clin Neurophysiol. 1994;91(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mielke R, Pietrzyk U, Jacobs A, et al. HMPAO SPET and FDG PET in Alzheimer’s disease and vascular dementia: comparison of perfusion and metabolic pattern. Eur J Nucl Med. 1994;21(10):1052–60.

    Article  CAS  PubMed  Google Scholar 

  31. Ohyama M, Senda M, Mishina M, et al. Semi-automatic ROI placement system for analysis of brain PET images based on elastic model: application to diagnosis of Alzheimer’s disease. Keio J Med. 2000;49.1:A105–6.

    Google Scholar 

  32. Mosconi L, Tsui WH, De Santi S, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology. 2005;64(11):1860–7.

    Article  CAS  PubMed  Google Scholar 

  33. von Borczyskowski D, Wilke F, Martin B, et al. Evaluation of a new expert system for fully automated detection of the Alzheimer’s dementia pattern in FDG PET. Nucl Med Commun. 2006;27(9):739–43.

    Article  Google Scholar 

  34. Kawachi T, Ishii K, Sakamoto S, et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2006;33(7):801–9.

    Article  PubMed  Google Scholar 

  35. Ishii K, Kono AK, Sasaki H, et al. Fully automatic diagnostic system for early- and late-onset mild Alzheimer’s disease using FDG PET and 3D-SSP. Eur J Nucl Med Mol Imaging. 2006;33(5):575–83.

    Article  PubMed  Google Scholar 

  36. Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med. 2007;48(4):547–52.

    Article  CAS  PubMed  Google Scholar 

  37. Matsunari I, Samuraki M, Chen WP, et al. Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer’s disease: aging effect on diagnostic performance. J Nucl Med. 2007;48(12):1961–70.

    Article  PubMed  Google Scholar 

  38. Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49(3):390–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Haense C, Herholz K, Jagust WJ, et al. Performance of FDG PET for detection of Alzheimer’s disease in two independent multicentre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord. 2009;28(3):259–66.

    Article  CAS  PubMed  Google Scholar 

  40. McMurtray AM, Licht E, Yeo T, et al. Positron emission tomography facilitates diagnosis of early-onset Alzheimer’s disease. Eur Neurol. 2008;59(1–2):31–7.

    PubMed  Google Scholar 

  41. Habeck C, Foster NL, Perneczky R, et al. Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. NeuroImage. 2008;40(4):1503–15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen K, Ayutyanont N, Langbaum JB, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. NeuroImage. 2011;56(1):52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bloudek LM, Spackman DE, Blankenburg M, et al. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26(4):627–45.

    CAS  PubMed  Google Scholar 

  44. Bohnen NI, Djang DS, Herholz K, et al. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med. 2012;53(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  45. Ishii K, Imamura T, Sasaki M, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease. Neurology. 1998;51(1):125–30.

    Article  CAS  PubMed  Google Scholar 

  46. Higuchi M, Tashiro M, Arai H, et al. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol. 2000;62(2):247–56.

    Article  Google Scholar 

  47. Kono AK, Ishii K, Sofue K, et al. Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer’s disease using FDG-PET and 3D-SSP. Eur J Nucl Med Mol Imaging. 2007;34(9):1490–7.

    Article  PubMed  Google Scholar 

  48. Foster NL, Heidebrink JL, Clark CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130(Pt 10):2616–35.

    Article  PubMed  Google Scholar 

  49. Salmon E, Sadzot B, Maquet P, et al. Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med. 1994;35(3):391–8.

    CAS  PubMed  Google Scholar 

  50. Hoffman JM, Welsh-Bohmer KA, Hanson M, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 2000;41(11):1920–8.

    CAS  PubMed  Google Scholar 

  51. Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.

    Article  CAS  PubMed  Google Scholar 

  52. Jagust W, Reed B, Mungas D, et al. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69(9):871–7.

    Article  CAS  PubMed  Google Scholar 

  53. McKeith IG, Dickson DW, Lowe J, et al. Consortium on DLB. Diagnosis and management of dementia with Lewy bodies. Neurology. 2005;65:1–10.

    Google Scholar 

  54. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.

    Article  CAS  PubMed  Google Scholar 

  55. Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol. 2005;62(7):1160–3.

    Article  PubMed  Google Scholar 

  56. Mosconi L, Perani D, Sorbi S, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology. 2004;63(12):2332–40.

    Article  CAS  PubMed  Google Scholar 

  57. Drzezga A, Grimmer T, Riemenschneider M, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46(10):1625–32.

    CAS  PubMed  Google Scholar 

  58. Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62(11):1728–33.

    Article  PubMed  Google Scholar 

  59. Yuan Y, ZX G, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. Am J Neuroradiol. 2009;30:404–10.

    Article  CAS  PubMed  Google Scholar 

  60. Herholz K, Westwood S, Haense C, et al. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52(8):1218–26.

    Article  PubMed  Google Scholar 

  61. Ito K, Fukuyama H, Senda M, et al. Prediction of outcomes in MCI by using 18F-FDG-PET: a multicenter study. J Alzheimers Dis. 2014;45(2):543–52.

    Google Scholar 

  62. Ito K, Mori E, Fukuyama H, et al. Prediction of outcomes in MCI with (123)I-IMP-CBF SPECT: a multicenter prospective cohort study. Ann Nucl Med. 2013;27(10):898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Small GW, Mazziotta JC, Collins MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA. 1995;273(12):942–7.

    Article  CAS  PubMed  Google Scholar 

  64. Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the e4 allele for apolipoprotein E. N Engl J Med. 1996;334(12):752–8.

    Article  CAS  PubMed  Google Scholar 

  65. Reiman EM, Chen K, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A. 2004;101(1):284–9.

    Article  CAS  PubMed  Google Scholar 

  66. Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2000;97(11):6037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive decline in normal elderly subjects with 2-F-18-fluoro-2-deoxy-d-glucose positron-emission tomography (FDG-PET). Proc Natl Acad Sci U S A. 2001;98(19):10966–71.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jack CR Jr, Knopman DS, Weigand SD, et al. An operational approach to National Institute on Aging-Alzheimer’s association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71(6):765–75.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Knopman DS, Jack CR Jr, Wiste HJ, et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann Neurol. 2013;73(4):472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wirth M, Villeneuve S, Haase CM, et al. Associations between Alzheimer disease biomarkers, neurodegeneration, and cognition in cognitively normal older people. JAMA Neurol. 2013;70(12):1512–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Inui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Inui, Y., Ito, K., Kato, T. (2017). FDG-PET in Alzheimer’s Disease. In: Matsuda, H., Asada, T., Tokumaru, A. (eds) Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55133-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55133-1_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55132-4

  • Online ISBN: 978-4-431-55133-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics