Skip to main content

Toward Clinical Application of Resting-State Functional Magnetic Resonance Imaging to Dementia

  • Chapter
  • First Online:
Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias
  • 2043 Accesses

Abstract

Functional magnetic resonance imaging (fMRI) has been widely used to assess brain activity in many fields including cognitive neuroscience and clinical medicine. Typically, fMRI requires a participant to perform a task of the investigator’s interest during MRI acquisition. In this chapter, we introduce an emerging variant of the fMRI technique, resting-state fMRI (rs-fMRI), or resting-state functional connectivity MRI (rsfcMRI), in which a participant is only required to lie quietly within an MRI scanner. That is, rs-fMRI/rsfcMRI does not impose a demanding task on a participant. This property is potentially advantageous for the application of rs-fMRI/rsfcMRI to patients with neuropsychiatric disorders, including dementia, who might have difficulty performing tasks. We discuss the potential of rs-fMRI/rsfcMRI for the diagnosis of dementia and for understanding the mechanism underlying its clinical symptoms, taking into consideration that rs-fMRI/rsfcMRI functional connectivity analysis is increasingly used to identify subtle brain network changes caused by the pathophysiology of dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roy CS, Sherrington CS. On the regulation of the blood-supply of the brain. J Physiol. 1890;11(1–2):85–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  4. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc B-Biol Sci. 2005;360(1457):1001–13. doi:10.1098/rstb.2005.1634.

    Article  Google Scholar 

  5. Birn RM, Murphy K, Bandettini PA. The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp. 2008;29(7):740–50. doi:10.1002/hbm.20577.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jafri MJ, Calhoun VD. Functional classification of schizophrenia using feed forward neural networks. Conf Proc IEEE Eng Med Biol Soc. 2006;(Suppl):6631–4.

    Google Scholar 

  8. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol. 2008;100(6):3328–42. doi:10.1152/jn.90355.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uddin LQ, Kelly AMC, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp. 2009;30(2):625–37. doi:10.1002/hbm.20531.

    Article  PubMed  Google Scholar 

  10. Grigg O, Grady CL. The default network and processing of personally relevant information: converging evidence from task-related modulations and functional connectivity. Neuropsychologia. 2010;48(13):3815–23. doi:10.1016/j.neuropsychologia.2010.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sakoglu U, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD. A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. MAGMA. 2010;23(5–6):351–66. doi:10.1007/s10334-010-0197-8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD. A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci. 2011;5:2. doi:10.3389/fnsys.2011.00002.

    PubMed  PubMed Central  Google Scholar 

  13. Arbabshirani MR, Havlicek M, Kiehl KA, Pearlson GD, Calhoun VD. Functional network connectivity during rest and task conditions: a comparative study. Hum Brain Mapp. 2012;34(11):2959–71. doi:10.1002/hbm.22118.

    Article  PubMed  Google Scholar 

  14. Bastin C, Yakushev I, Bahri MA, Fellgiebel A, Eustache F, Landeau B, Scheurich A, Feyers D, Collette F, Chetelat G, Salmon E. Cognitive reserve impacts on inter-individual variability in resting-state cerebral metabolism in normal aging. NeuroImage. 2012;63(2):713–22. doi:10.1016/j.neuroimage.2012.06.074.

    Article  PubMed  Google Scholar 

  15. Koch W, Teipel S, Mueller S, Benninghoff J, Wagner M, Bokde ALW, Hampel H, Coates U, Reiser M, Meindl T. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiol Aging. 2012;33(3):466–78. doi:10.1016/j.neurobiolaging.2010.04.013.

    Article  PubMed  Google Scholar 

  16. Li R, Wu X, Chen K, Fleisher AS, Reiman EM, Yao L. Alterations of directional connectivity among resting-state networks in Alzheimer disease. AJNR Am J Neuroradiol. 2013;34(2):340–5. doi:10.3174/ajnr.A3197.

    Article  CAS  PubMed  Google Scholar 

  17. Segall JM, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl K, Calhoun VD. Correspondence between structure and function in the human brain at rest. Front Neuroinform. 2012;6:10. doi:10.3389/fninf.2012.00010.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang Z, Liu J, Zhong N, Qin Y, Zhou H, Li K. Changes in the brain intrinsic organization in both on-task state and post-task resting state. NeuroImage. 2012;62(1):394–407. doi:10.1016/j.neuroimage.2012.04.051.

    Article  PubMed  Google Scholar 

  19. Zou Q, Ross TJ, Gu H, Geng X, Zuo XN, Hong LE, Gao JH, Stein EA, Zang YF, Yang Y. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Hum Brain Mapp. 2013;34(12):3204–15. doi:10.1002/hbm.22136.

    Article  PubMed  Google Scholar 

  20. Damoiseaux JS, Rombouts S, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103(37):13848–53. doi:10.1073/pnas.0601417103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage. 2006;31(2):496–504. doi:10.1016/j.neuroimage.2005.12.033.

    Article  PubMed  Google Scholar 

  22. Sorg C, Riedl V, Muehlau M, Calhoun VD, Eichele T, Laeer L, Drzezga A, Foerstl H, Kurz A, Zimmer C, Wohlschlaeger AM. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18760–5. doi:10.1073/pnas.0708803104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly RE, Alexopoulos GS, Wang ZS, Gunning FM, Murphy CF, Morimoto SS, Kanellopoulos D, Jia ZR, Lim KO, Hoptman MJ. Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods. 2010;189(2):233–45. doi:10.1016/j.jneumeth.2010.03.028.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Adriaanse SM, Sanz-Arigita EJ, Binnewijzend MA, Ossenkoppele R, Tolboom N, van Assema DM, Wink AM, Boellaard R, Yaqub M, Windhorst AD. Amyloid and its association with default network integrity in Alzheimer’s disease. Hum Brain Mapp. 2012;35(3):779–91.

    Article  PubMed  Google Scholar 

  25. Zarei M, Beckmann CF, Binnewijzend MA, Schoonheim MM, Oghabian MA, Sanz-Arigita EJ, Scheltens P, Matthews PM, Barkhof F. Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer’s disease. NeuroImage. 2012;66:28–35.

    Article  PubMed  Google Scholar 

  26. Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2010;103(1):297–321. doi:10.1152/jn.00783.2009.

    Article  PubMed  Google Scholar 

  27. Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage. 2013;83:550–8. doi:10.1016/j.neuroimage.2013.05.099.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM. The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage. 2013;78:463–73. doi:10.1016/j.neuroimage.2013.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Samann PG, Wehrle R, Hoehn D, Spoormaker VI, Peters H, Tully C, Holsboer F, Czisch M. Development of the brain's default mode network from wakefulness to slow wave sleep. Cereb Cortex. 2011;21(9):2082–93. doi:10.1093/cercor/bhq295.

    Article  PubMed  Google Scholar 

  30. Omata K, Hanakawa T, Morimoto M, Honda M. Spontaneous slow fluctuation of EEG alpha rhythm reflects activity in deep-brain structures: a simultaneous EEG-fMRI study. PLoS One. 2013;8(6):12. doi:10.1371/journal.pone.0066869.

    Article  Google Scholar 

  31. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–41. doi:10.1089/brain.2012.0073.

    Article  PubMed  Google Scholar 

  32. Zang Y-F, He Y, Zhu C-Z, Cao Q-J, Sui M-Q, Liang M, Tian L-X, Jiang T-Z, Wang Y-F. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development. 2007;29(2):83–91. doi:10.1016/j.braindev.2006.07.002.

    Article  PubMed  Google Scholar 

  33. Yan CG, Liu DQ, He Y, Zou QH, Zhu CZ, Zuo XN, Long XY, Zang YF. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One. 2009;4(5):11. doi:10.1371/journal.pone.0005743.

    Article  Google Scholar 

  34. Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172(1):137–41. doi:10.1016/j.jneumeth.2008.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic denoising of functional MM data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage. 2014;90:449–68. doi:10.1016/j.neuroimage.2013.11.046.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arbabshirani MR, Kiehl KA, Pearlson GD, Calhoun VD. Classification of schizophrenia patients based on resting-state functional network connectivity. Front Neurosci. 2013;7:16. doi:10.3389/fnins.2013.00133.

    Article  Google Scholar 

  37. Craddock RC, Holtzheimer PE III, Hu XP, Mayberg HS. Disease state prediction from resting state functional connectivity. Magn Reson Med. 2009;62(6):1619–28. doi:10.1002/mrm.22159.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 2008;4(6):11. doi:10.1371/journal.pcbi.1000100.

    Article  Google Scholar 

  39. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):4637–42. doi:10.1073/pnas.0308627101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bero AW, Bauer AQ, Stewart FR, White BR, Cirrito JR, Raichle ME, Culver JP, Holtzman DM. Bidirectional relationship between functional connectivity and amyloid-beta deposition in mouse brain. J Neurosci. 2012;32(13):4334–40. doi:10.1523/Jneurosci.5845-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H-Y, Wang S-J, Liu B, Ma Z-L, Yang M, Zhang Z-J, Teng G-J. Resting brain connectivity: changes during the progress of alzheimer disease. Radiology. 2010;256(2):598–606.

    Article  PubMed  Google Scholar 

  42. Brier MR, Thomas JB, Snyder AZ, Benzinger TL, Zhang D, Raichle ME, Holtzman DM, Morris JC, Ances BM. Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci. 2012;32(26):8890–9. doi:10.1523/jneurosci.5698-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sperling RA, LaViolette PS, O'Keefe K, O'Brien J, Rentz DM, Pihlajamaki M, Marshall G, Hyman BT, Selkoe DJ, Hedden T. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63(2):178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry. 2013;74(5):340–7. doi:10.1016/J.Biopsych.2012.11.028.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang SZ, Mintun MA. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67(6):584–7. doi:10.1016/J.Biopsych.2009.08.024.

    Article  CAS  PubMed  Google Scholar 

  46. Oh H, Mormino EC, Madison C, Hayenga A, Smiljic A, Jagust WJ. Beta-amyloid affects frontal and posterior brain networks in normal aging. NeuroImage. 2011;54(3):1887–95. doi:10.1016/j.neuroimage.2010.10.027.

    Article  CAS  PubMed  Google Scholar 

  47. Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67. doi:10.1016/j.cortex.2014.08.011.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hanakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Ogata, Y., Hanakawa, T. (2017). Toward Clinical Application of Resting-State Functional Magnetic Resonance Imaging to Dementia. In: Matsuda, H., Asada, T., Tokumaru, A. (eds) Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55133-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55133-1_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55132-4

  • Online ISBN: 978-4-431-55133-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics