Skip to main content

Neuroimaging Study of Alzheimer’s Disease in Volunteer-Based Cohort

  • Chapter
  • First Online:
Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias

Abstract

Neuroimaging techniques such as positron emission tomography (PET) or magnetic resonance imaging (MRI) may provide opportunities to detect AD-related signatures at early or even preclinical stage. We initiated the Ishikawa Brain Imaging Study (IBIS) in 2002 to establish the Japanese standard brain images and to seek imaging biomarkers for clinical and preclinical assessment of AD and other forms of neurodegenerative diseases using PET and MRI. At present, approximately 1400 volunteer subjects and 610 patients with dementia participated in the study. We found that normalcy rate in volunteer-based population decreases significantly as a function of age. Furthermore, neuroimaging biomarkers are affected by factors such as age, but uncertainty still exists as to the effect of ApoE ε4 allele in cognitively normal subjects. Therefore, more work is necessary for better understanding of interaction between genetic or nongenetic factors such as ApoE ε4 allele or aging and neuroimaging biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80(6):1347–58. doi:10.1016/j.neuron.2013.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Shen L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement. 2013;9(5):e111–94. doi:10.1016/j.jalz.2013.05.1769.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yanase D, Matsunari I, Yajima K, Chen W, Fujikawa A, Nishimura S, Matsuda H, Yamada M. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. Eur J Nucl Med Mol Imaging. 2005;32(7):794–805. doi:10.1007/s00259-005-1767-2.

    Article  PubMed  Google Scholar 

  4. Matsunari I, Samuraki M, Chen WP, Yanase D, Takeda N, Ono K, Yoshita M, Matsuda H, Yamada M, Kinuya S. Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer’s disease: aging effect on diagnostic performance. J Nucl Med. 2007;48(12):1961–70. doi:10.2967/jnumed.107.042820.

    Article  PubMed  Google Scholar 

  5. Samuraki M, Matsunari I, Chen WP, Shima K, Yanase D, Takeda N, Matsuda H, Yamada M. Glucose metabolism and gray-matter concentration in apolipoprotein E epsilon4 positive normal subjects. Neurobiol Aging. 2012;33(10):2321–3. doi:10.1016/j.neurobiolaging.2011.11.020.

    Article  CAS  PubMed  Google Scholar 

  6. Shima K, Matsunari I, Samuraki M, Chen WP, Yanase D, Noguchi-Shinohara M, Takeda N, Ono K, Yoshita M, Miyazaki Y, Matsuda H, Yamada M. Posterior cingulate atrophy and metabolic decline in early stage Alzheimer’s disease. Neurobiol Aging. 2012;33(9):2006–17. doi:10.1016/j.neurobiolaging.2011.07.009.

    Article  PubMed  Google Scholar 

  7. Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med. 1994;35(9):1528–37.

    CAS  PubMed  Google Scholar 

  8. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1995;2:189–210.

    Article  Google Scholar 

  9. Chen WP, Samuraki M, Yanase D, Shima K, Takeda N, Ono K, Yoshita M, Nishimura S, Yamada M, Matsunari I. Effect of sample size for normal database on diagnostic performance of brain FDG PET for the detection of Alzheimer’s disease using automated image analysis. Nucl Med Commun. 2008;29(3):270–6. doi:10.1097/MNM.0b013e3282f3fa76.

    Article  PubMed  Google Scholar 

  10. Chen WP, Samuraki M, Shima K, Yanase D, Takeda N, Miyazaki Y, Ono K, Yoshita M, Nishimura S, Yamada M, Matsunari I. Effect of an age-mismatched and sex-mismatched normal database on the diagnostic performance of 18F-FDG PET for Alzheimer’s disease: the Ishikawa brain imaging study. Nucl Med Commun. 2011;32(12):1128–33. doi:10.1097/MNM.0b013e32834b43c2.

    Article  PubMed  Google Scholar 

  11. Kuhl DE, Metter EJ, Riege WH, Phelps ME. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1982;2(2):163–71. doi:10.1038/jcbfm.1982.15.

    Article  CAS  PubMed  Google Scholar 

  12. Hawkins RA, Mazziotta JC, Phelps ME, Huang SC, Kuhl DE, Carson RE, Metter EJ, Riege WH. Cerebral glucose metabolism as a function of age in man: influence of the rate constants in the fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1983;3(2):250–3. doi:10.1038/jcbfm.1983.34.

    Article  CAS  PubMed  Google Scholar 

  13. Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA, Manning RG, Cutler NR, Rapoport SI. Human brain glucose utilization and cognitive function in relation to age. Ann Neurol. 1984;16(6):703–13.

    Article  CAS  PubMed  Google Scholar 

  14. de Leon MJ, George AE, Tomanelli J, Christman D, Kluger A, Miller J, Ferris SH, Fowler J, Brodie JD, van Gelder P, et al. Positron emission tomography studies of normal aging: a replication of PET III and 18-FDG using PET VI and 11-CDG. Neurobiol Aging. 1987;8(4):319–23.

    Article  PubMed  Google Scholar 

  15. Yoshii F, Barker WW, Chang JY, Loewenstein D, Apicella A, Smith D, Boothe T, Ginsberg MD, Pascal S, Duara R. Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors. J Cereb Blood Flow Metab. 1988;8(5):654–61. doi:10.1038/jcbfm.1988.112.

    Article  CAS  PubMed  Google Scholar 

  16. Salmon E, Maquet P, Sadzot B, Degueldre C, Lemaire C, Franck G. Decrease of frontal metabolism demonstrated by positron emission tomography in a population of healthy elderly volunteers. Acta Neurol Belg. 1991;91(5):288–95.

    CAS  PubMed  Google Scholar 

  17. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, Davatzikos C, Frost JJ. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12(4):571–83. doi:10.1038/jcbfm.1992.81.

    Article  CAS  PubMed  Google Scholar 

  18. Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med. 1995;36(7):1141–9.

    CAS  PubMed  Google Scholar 

  19. Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F, Alexander GE, Grady C, Pietrini P, Eidelberg D. The metabolic topography of normal aging. J Cereb Blood Flow Metab. 1996;16(3):385–98. doi:10.1097/00004647-199605000-00005.

    Article  CAS  PubMed  Google Scholar 

  20. Petit-Taboue MC, Landeau B, Desson JF, Desgranges B, Baron JC. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. NeuroImage. 1998;7(3):176–84. doi:10.1006/nimg.1997.0318.

    Article  CAS  PubMed  Google Scholar 

  21. Ivancevic V, Alavi A, Souder E, Mozley PD, Gur RE, Benard F, Munz DL. Regional cerebral glucose metabolism in healthy volunteers determined by fluordeoxyglucose positron emission tomography: appearance and variance in the transaxial, coronal, and sagittal planes. Clin Nucl Med. 2000;25(8):596–602.

    Article  CAS  PubMed  Google Scholar 

  22. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zundorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien-Baumann B, Menzel C, Schroder J, Kato T, Arahata Y, Henze M, Heiss WD. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage. 2002;17(1):302–16.

    Article  CAS  PubMed  Google Scholar 

  23. Knopman DS, Jack CR Jr, Wiste HJ, Lundt ES, Weigand SD, Vemuri P, Lowe VJ, Kantarci K, Gunter JL, Senjem ML, Mielke MM, Roberts RO, Boeve BF, Petersen RC. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging. 2014;35(9):2096–106. doi:10.1016/j.neurobiolaging.2014.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996;334(12):752–8. doi:10.1056/NEJM199603213341202.

    Article  CAS  PubMed  Google Scholar 

  25. Reiman EM, Uecker A, Caselli RJ, Lewis S, Bandy D, de Leon MJ, De Santi S, Convit A, Osborne D, Weaver A, Thibodeau SN. Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer’s disease. Ann Neurol. 1998;44(2):288–91. doi:10.1002/ana.410440226.

    Article  CAS  PubMed  Google Scholar 

  26. Lemaitre H, Crivello F, Dufouil C, Grassiot B, Tzourio C, Alperovitch A, Mazoyer B. No epsilon4 gene dose effect on hippocampal atrophy in a large MRI database of healthy elderly subjects. NeuroImage. 2005;24(4):1205–13. doi:10.1016/j.neuroimage.2004.10.016.

    Article  PubMed  Google Scholar 

  27. Roberts RO, Knopman DS, Cha RH, Mielke MM, Pankratz VS, Boeve BF, Kantarci K, Geda YE, Jack CR Jr, Petersen RC, Lowe VJ. Diabetes and elevated hemoglobin A1c levels are associated with brain hypometabolism but not amyloid accumulation. J Nucl Med. 2014;55(5):759–64. doi:10.2967/jnumed.113.132647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts RO, Knopman DS, Przybelski SA, Mielke MM, Kantarci K, Preboske GM, Senjem ML, Pankratz VS, Geda YE, Boeve BF, Ivnik RJ, Rocca WA, Petersen RC, Jack CR Jr. Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology. 2014;82(13):1132–41. doi:10.1212/WNL.0000000000000269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Matsunari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Samuraki, M., Matsunari, I., Yamada, M. (2017). Neuroimaging Study of Alzheimer’s Disease in Volunteer-Based Cohort. In: Matsuda, H., Asada, T., Tokumaru, A. (eds) Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55133-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55133-1_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55132-4

  • Online ISBN: 978-4-431-55133-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics