Skip to main content

Biology and Ecology of Radiolaria

  • Chapter
Marine Protists

Abstract

Radiolaria are unicellular holoplanktonic protozoa with siliceous or strontium sulfate skeletons. Mainly studied by micropaleontologists because of their excellent fossil record, they are also key members of planktonic communities and play important roles in various oceanic ecosystems. This chapter presents an overview of the current knowledge on living Radiolaria (orders Acantharia, Collodaria, Nassellaria, Spumellaria and Taxopodia). Besides general considerations on Radiolaria as a whole, it focuses on the taxonomy, biology, and ecology of each radiolarian order. Finally this chapter provides insights on research perspectives to improve our knowledge of living radiolarians and their ecological role in marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelmann A (1992) Radiolarian taxa from Southern Ocean sediment traps (Atlantic sector). Polar Biol 12:373–385

    Google Scholar 

  • Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35:503–536

    Article  CAS  Google Scholar 

  • Abelmann A, Nimmergut A (2005) Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions. Deep-Sea Res Part II 52:2302–2331

    Article  Google Scholar 

  • Anderson OR (1983) Radiolaria. Springer, New York

    Book  Google Scholar 

  • Anderson OR (1993) The trophic role of planktonic foraminifera and Radiolaria. Mar Microb Food Webs 71:31–51

    Google Scholar 

  • Anderson OR (1994) Cytoplasmic origin and surface deposition of siliceous structures in Sarcodina. Protoplasma 181:61–77

    Article  Google Scholar 

  • Anderson OR, Bennett P (1985) A conceptual and quantitative analysis of skeletal morphogenesis in living species of solitary Radiolaria: Euchitonia elegans and Spongaster tetras. Mar Micropaleontol 9:441–454

    Article  Google Scholar 

  • Anderson OR, Gupta SM (1998) Evidence of binary division in mature central capsules of a collosphaerid colonial radiolarian: implications for shell ontogenetic patterns in modern and fossil species. Palaeontol Electron 11:1–13

    Google Scholar 

  • Anderson OR, Matsuoka A (1992) Endocytoplasmic microalgae and bacteroids within the central capsule of the radiolarian Dictyocoryne truncatum. Symbiosis 12:237–247

    Google Scholar 

  • Anderson OR, Swanberg NR, Bennett P (1983) Assimilation of symbiont-derived photosynthates in some solitary and colonial radiolaria. Mar Biol 77:265–269

    Article  CAS  Google Scholar 

  • Anderson OR, Swanberg NR, Bennett P (1984) An estimate of predation rate and relative preference for algal versus crustacean prey by a spongiose skeletal radiolarian. Mar Biol 78:205–207

    Article  Google Scholar 

  • Anderson OR, Bennett P, Bryan M (1989) Experimental and observational studies of radiolarian physiological ecology: 3. Effects of temperature, salinity and light intensity on the growth and survival of Spongaster tetras tetras maintained in laboratory culture. Mar Micropaleontol 14:275–282

    Article  Google Scholar 

  • Anderson OR, Bryan M, Bennett P (1990) Experimental and observational studies of radiolarian physiological ecology: 4. Factors determining the distribution and survival of Didymocyrtis tetrathalamus tetrathalamus with implications for paleoecological interpretations. Mar Micropaleontol 16:155–167

    Article  Google Scholar 

  • Anderson OR, Langodon C, Danellian T (1998) Fine structure of a large dinoflagellate symbiont associated with a colonial radiolarian (Collozoum sp.) in the Banda Sea. Symbiosis 24:259–270

    Google Scholar 

  • Anita AN et al (1993) Abundance, encystment and sedimentation of Acantharia during autumn 1990 in the East Greenland Sea. J Plankton Res 15:99–114

    Article  Google Scholar 

  • Bachvaroff T et al (2012) Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Appl Environ Microbiol 78:334–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beers JR, Stewart GL (1970) The preservation of acantharians in fixed plankton samples. Limnol Oceanogr 15:825–827

    Article  Google Scholar 

  • Bernstein RE, Byrne RH (2004) Acantharians and marine barite. Mar Chem 86:45–50

    Article  CAS  Google Scholar 

  • Bernstein RE et al (1987) Acantharian fluxes and strontium to chlorinity ratio in the North Pacific Ocean. Science 237:1490–1994

    Article  CAS  PubMed  Google Scholar 

  • Bernstein RE et al (1992) Morphologies and transformations of celestite in seawater: the role of acantharians in strontium and barium geochemistry. Geochim Cosmochim Acta 56:3273–3279

    Article  CAS  Google Scholar 

  • Bernstein R, Kling SA, Boltovskoy D (1999) Acantharia. In: Boltovskoy D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, pp 75–147

    Google Scholar 

  • Biard T et al (2015) Toward an integrative morpho-molecular classification of the Collodaria (Polycystinea, Radiolaria). Protist. doi:10.1016/j.protis.2015.05.002

  • Boltosvkoy D, Ridel WR (1987) Polycystine Radiolaria of the California Current region: seasonal and geographical patterns. Mar Micropaleontol 12:65–104

    Article  Google Scholar 

  • Boltovskoy D, Alder VA, Abelmann A (1993) Annual flux of Radiolaria and other shelled planktons in the eastern equatorial Atlantic at 853m: seasonal variations and Polycystine species-specific responses. Deep-Sea Res 409:1863–1895

    Article  Google Scholar 

  • Boltovskoy D, Uliana E, Wefer G (1996) Seasonal variations in the flux of microplankton and radiolarian assemblage compositions in the northeastern tropical Atlantic at 2195m. Limnol Oceanogr 414:615–635

    Article  Google Scholar 

  • Boltovskoy D et al (2003) First record of a brackish radiolarian (Polycystina): Lophophaena rioplatensis n. sp. in the Río de la Plata estuary. J Plankton Res 25:1551–1559

    Article  Google Scholar 

  • Boltovskoy D et al (2010) World atlas of distribution of recent polycystina (Radiolaria). Palaeontol Electron 133:1–230

    Google Scholar 

  • Borgert A (1898) Beiträge zur Kenntnis des in Sticholonche zanclea und Acanthometridenarten vorkommenden Parasiten (Spiralkörper Fol, Amoebophyra Köppen). Z Wiss Zool 63:141–186

    Google Scholar 

  • Brandt K (1883) Über symbiose von Algen und Thieren. Arch Anat Physiol 1883:445–454

    Google Scholar 

  • Brass GW (1979) Trace elements in acantharian skeletons. Limnol Oceanogr 25:146–149

    Article  Google Scholar 

  • Cachon J (1964) Contibution a l’étude des péridiniens parasites. Cytologie, cycles évolutifs. Ann Sci Nat Ser 12(6):1–158

    Google Scholar 

  • Cachon J, Cachon M (1980) Axopod regeneration in Sticholonche zanclea: transport and positioning mechanism of cytoplasmic structures. Arch Protistenkd 123:84–98

    Article  Google Scholar 

  • Cachon J, Cachon M (1987) Chapter 13 parasitic dinoflagellates. In: Talyor FJR (ed) The biology of dinoflagellates, vol 12, Botanical monograph. Blackwell Scientific Publication, Oxford, pp 571–610

    Google Scholar 

  • Cachon J et al (1977) Movement generated by interactions between the dense material at the ends of microtubules and non-actin-containing microfilaments in Sticholonche zanclea. J Cell Biol 72:314–338

    Article  CAS  PubMed  Google Scholar 

  • Cachon J, Cachon M, Estep KW (1989) 20a Phylum Actinopodia, Classes Polycystina (= Radiolaria) and Phaeodaria. In: Margulis L et al (eds) Handbook of protoctista. Jones and Bratlett Publishers, Boston, pp 334–346

    Google Scholar 

  • Campbell AS (1954) Radiolaria. In: Moore RC (ed) Treatise on invertebrate paleontology, part D protista 3. protozoa (chiefly Radiolaria and Tintinnina). Geological Society of America and University of Kansas Press, Kansas, pp D1–D163

    Google Scholar 

  • Campbell AK et al (1981) Application of the photoprotein obelin to the measurement of free Ca2+ in cells. In: DeLuca MA, McElory WD (eds) Proceedings of the symposium on bioluminescens and chemiluminescence: basic chemistry and analytical applications held at the University of California, La Jolla, California on August 26–28, 1980. Academic Press, New York, pp 601–607

    Google Scholar 

  • Caron DA et al (1995) Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda. J Plankton Res 17:103–129

    Article  Google Scholar 

  • Chen M-H, Tan Z-Y (1996) Radiolaria from surface sediments of the central and northern South China Sea. Scientific Publishers, Beijing

    Google Scholar 

  • Coats DW, Bachvaroff TR, Delwiche CF (2012) Revision of the family Dubosquellidae with description of Euduboscauella crenulata n. gen., n. sp. (Dinoflatellata, Syndinea), an intracellular parasite of the ciliate Favella panamensis Kofoid & Campbell, 1929. J Eukaryot Microbiol 59:1–11

    Article  PubMed  Google Scholar 

  • Cortese G, Abelmann A (2002) Radiolarian-based paleotemperature during the last 160 kyr at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeogr Palaeoclimatol Palaeoecol 182:259–286

    Article  Google Scholar 

  • De Deckker P (2004) On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios. Hydrobiologia 517:1–13

    Article  Google Scholar 

  • De Wever P et al (2001) Radiolarians in the sedimentary record. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Decelle J et al (2012a) An original mode of symbiosis in open ocean plankton. Proc Natl Acad Sci U S A 10944:18000–18005

    Article  Google Scholar 

  • Decelle J et al (2012b) Multiple microalgal partners in symbiosis with the acantharian Acanthociasma sp. (Radiolaria). Symbiosis 57:233–244

    Article  CAS  Google Scholar 

  • Decelle J et al (2012c) Molecular phylogeny and morphological evolution of the Acantharia (Radiolaria). Protists 163:435–450

    Article  Google Scholar 

  • Decelle J et al (2013) Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS One 81:e53598

    Article  CAS  Google Scholar 

  • Decelle J et al (2014) Intracellular Diversity of the V4 and V9 Regions of the 18S rRNA in Marine Protists (Radiolarians) Assessed by High-Throughput Sequencing. PLos One 9:e104297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Decelle J, Colin S, Foster RA (2015) Photosymbiosis in marine planktonic protists. In: Ohtsuka S et al (eds) Marine protists: diversity and dynamics. Springer, Tokyo, pp 465–500

    Google Scholar 

  • Dennett MR et al (2002) Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific. J Plankton Res 24:797–805

    Article  Google Scholar 

  • Dolven JK et al (2007) Molecular diversity of alveolates associated with neritic North Atlantic radiolarians. Protist 158:65–76

    Article  CAS  PubMed  Google Scholar 

  • Dumitrica P (2013) Siamese twins and twin-like skeletons in Mesozoic polycystine Radiolaria. Rev Micropaléontol 56:51–61

    Article  Google Scholar 

  • Dworetzky BA, Morley JJ (1987) Vertical distribution of Radiolaria in the eastern equational Atlantic: analysis of a multiple series of closely-spaced plankton tows. Mar Micropaleontol 12:1–19

    Article  Google Scholar 

  • Eskinazi-Sant’anna EM (2006) Sticholonche zanclea (Protozoa, Actinopoda) in fecal pellets of copepods and Euphausia sp. in Brazilian coastal waters. Braz J Biol 66:839–847

    Article  PubMed  Google Scholar 

  • Febvre J (1971) Le Myonème d’Acantharie: Essai d’interprétation ultrastructurale et cinétique. Protistologica 7:379–391

    Google Scholar 

  • Febvre J (1972) Le cortex ectoplasmique des Acanthaires. I. – Les systems maillés. Protistologica 8:169–178

    Google Scholar 

  • Febvre J (1974) Relation morphologiques enter les constituants de l’enveloppe, les myonemes, le squelette et la plasmalemme chez les Artharacantha Schew. (Acantharia). Protistologica 10:141–158

    Google Scholar 

  • Febvre J (1981) The myoneme of the Acantharia (Protozoa): a new model of cellular motility. Biosystems 14:327–336

    Article  CAS  PubMed  Google Scholar 

  • Febvre J (1989) 20c. phylum Actinopoda, class Acantharia. In: Margulis L et al (eds) Handbook of protoctista. Jones and Bartlett Publishers, Boston, pp 363–379

    Google Scholar 

  • Fol H (1883) Sur le Sticholonche zanclea et un nouvel ordre de Rhizopodes. Mem Inst Natl Genevois 15:1–35

    Google Scholar 

  • Gowing MM (1993) Seasonal radiolarian flux at the VERTREX North Pacific time-series site. Deep-Sea Res 403:517–545

    Article  Google Scholar 

  • Gupta SM (2002) Pyloniid stratigraphy – a new tool to date tropical radiolarian ooze from the central tropical Indian Ocean. Mar Geol 184:85–93

    Article  Google Scholar 

  • Haeckel E (1862) Die Radiolarien (Rhizopoda Radiolaria). Eine Monographie. Tafel 1. Reimer, Berlin

    Book  Google Scholar 

  • Haeckel E (1887) Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. Rep Sci Results Voyage Challenger Zool 18:1–1803

    Google Scholar 

  • Hays JD, Morley JJ (2004) The Sea of Okhotsk: a window on the Ice Age Ocean. Deep-Sea Res Part I 51:593–618

    Article  Google Scholar 

  • Henjes J et al (2007) Response to the larger zooplankton to an iron-induced phytoplankton bloom in the Polar Frontal Zone of the Southern Ocean (EisenEx). Deep-Sea Res Part I 54:774–791

    Article  Google Scholar 

  • Hertwig R (1879) Der Organismus der Radiolarien. Gustav Fischer, Jena

    Google Scholar 

  • Hollande A, Corbel J-C (1982) Ultrastructure, cycle évolutif et position systématique de Caryotoma bernardi Holl. et Enj. (Dinoflagellés Oodinides), parasites endocapsulaire des Thalassicolles (Radiolaires). Protostologica 18:123–133

    Google Scholar 

  • Hollande A, Enjumet M (1954) Morphologie et affinities du Radiolaire Sticholonche zanclea Hertwig. Ann Sci Nat 11(16):337–343

    Google Scholar 

  • Hollande A, Enjumet M (1955) Parasites et cycle évolutif des Radiolaires et des Acanthaires. Bull Trav Publ St Aquiculture Pêche Castiglione 7:151–176

    Google Scholar 

  • Hughes NP et al (1989) Biological minerals formed from strontium and barium sulphates. III. The morphology and crystallography of strontium sulphate cystals from the colonial radiolarian, Sphaerozoum punctatum. Proc R Soc Lond B 238:223–233

    Article  CAS  Google Scholar 

  • Hülsemann K (1963) Radiolaria in plankton from the Arctic Drifting Station T-3, including the description of three new species. Arct Inst N Am Tech Pap 13:1–52

    Google Scholar 

  • Ikenoue T et al (2012) Fifteen year time-series of radiolarian fluxes and environmental conditions in the Bering Sea and the central subarctic Pacific, 1990–2005. Deep-Sea Res Part II 61–64:17–49

    Article  Google Scholar 

  • International Commission on Zoological Nomenclature (ICZN) (1999) International code of zoological nomenclature, 4th edn. International Trust for Zoological Nomenclature, the Natural History Museum, London

    Google Scholar 

  • Itak T, Bjørklund KR (2008) Conjoined radiolarian skeletons (Actinommidae) from the Japan Sea sediments. Micropaleontology 53:371–389

    Article  Google Scholar 

  • Itaki T, Takahashi K (1994) Preliminary results on radiolarian fluxes in the central subarctic Pacific and Bering Sea. Proc Hokkaido Tokai Univ Sci Eng 7:37–47

    Google Scholar 

  • Itaki T et al (2003) Depth distribution of radiolarians from the Chukuchi and Beaufort Seas, western Arctic. Deep-Sea Res Part I 50:1507–1522

    Article  Google Scholar 

  • Jacot Des Combes H, Abelmann A (2007) A 350-ky radiolarian record off Lüderitz, Namibia-evidence for changes in the upwelling regime. Mar Micropaleontol 62:194–210

    Article  Google Scholar 

  • Kamikuri S, Motoyama I, Nishimura A (2008) Radiolarian assemblages in surface sediments along longitude 175° E in the Pacific Ocean. Mar Micropaleontol 69:151–172

    Article  Google Scholar 

  • Khmeleva NN (1967) Role of radiolarians in the estimation of the primary production in the Red Sea and Aden bay. Dokl Akad Nauk SSSR 172:1430–1433

    Google Scholar 

  • Kimoto K, Yuasa T, Takahashi O (2011) Molecular identification of reproductive cell released from Cypassis irregularis (Radiolaria). Environ Microbiol Rep 3:86–90

    Article  CAS  PubMed  Google Scholar 

  • Klaas C (2001) Spring distribution of larger (>64 μm) protozoans in the Atlantic sector of the Southern Ocean. Deep-Sea Res Part I 48:1627–1649

    Article  Google Scholar 

  • Kling SA (1979) Vertical distribution of polycystine radiolarians in the central North Pacific. Mar Micropaleontol 4:295–318

    Article  Google Scholar 

  • Koeppen N (1894) Amoebophrya stycholonchae nov. gen. et sp. Zool Anz 17:417–424

    Google Scholar 

  • Kruglikova SB (1993) Observations on the distribution of polycystine Radiolaria in marine sediments (mainly at high taxonomic levels). Micropaleontol Specl Publ 6:17–21

    Google Scholar 

  • Latz MI et al (1987) Bioluminescence of colonial radiolaria in the western Sargasso Sea. J Exp Mar Biol Ecol 109:25–38

    Article  Google Scholar 

  • Lombari G, Boden G (1985) Modern radiolarian global distributions. Cushman Found Foraminifer Res Spec Publ 16A:1–125

    Google Scholar 

  • Lovejoy C, Potvin M (2011) Microbial eukaryotic distribution in dynamic Beaufort Sea and the Arctic Ocean. J Plankton Res 33:431–444

    Article  Google Scholar 

  • Martin et al (2010) Sedimentation of acantharian cysts in the Iceland Basin: strontium as a ballas for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnol Oceanogr 55:604

    Article  CAS  Google Scholar 

  • Massana R (2015) Protistian diversity in environmental molecular surveys. In: Ohtsuka S (ed) Marine protists: diversity and dynamics. Springer, Tokyo, pp 3–221

    Google Scholar 

  • Massera-Bottazzi E, Andreoli MG (1982) Distribution of adult and juvenile Acantharia (Protozoa Sarcodina) in the Atlantic Ocean. J Plankton Res 4:757–777

    Article  Google Scholar 

  • Matsuoka A (2007) Living radiolarian feeding mechanisms: new light on past marine ecosystems. Swiss J Geosci 100:273–279

    Article  Google Scholar 

  • Matsuoka A, Anderson OR (1992) Experimental and observational studies of radiolarian physiological ecology: 5. Temperature and salinity tolerance of Dictyocoryne truncatum. Mar Micropaleontol 19:299–313

    Article  Google Scholar 

  • Matsuzaki KM et al (2014) Paleoceanographic history of the Northwestern Pacific Ocean over the past 740 kyr, discerned from radiolarian fauna. Palaeogr Palaeoclimatol Palaeoecol 396:26–40

    Article  Google Scholar 

  • Matsuzaki K, Suzuki N, Nishi H (2015) Middle to upper Pleistocene polycystine radiolarians from Hole 902-C9001, northwestern Pacific. Paleontol Res Supplement to 9:1–77

    Google Scholar 

  • Matul’ AG (1998) On the Radiolaria from the surface layer of the bottom sediments of the northern sector of the Benguela upwelling. Oceanology 38:759–765

    Google Scholar 

  • Michaels AF (1988) Vertical distribution of abundance of Acantharia and their symbionts. Mar Biol 97:559–569

    Article  Google Scholar 

  • Michaels AF (1991) Acantharian abundance and symbiont productivity at the VERTEX seasonal station. J Plankton Res 13:399–418

    Article  Google Scholar 

  • Michaels AF et al (1995) Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux. J Plankton Res 171:131–163

    Article  Google Scholar 

  • Molina-Cruz A (1984) Radiolaria as indications of upwelling processes: the Peruvian connection. Mar Micropaleontol 9:53–75

    Article  Google Scholar 

  • Molina-Cruz A, Martinez-López M (1994) Oceanography of the Gulf of Tehuatnepec, Mexico, indicated by Radiolaria remains. Palaeogeogr Palaeoclimatol Palaeoecol 110:179–195

    Google Scholar 

  • Molina-Cruz A, Welling L, Caudillo-Bohorquez A (1999) Radiolarian distribution in the water column, southern Gulf of California, and its implication in thanatocoenose constitution. Mar Micropaleontol 37:149–171

    Article  Google Scholar 

  • Müller J (1859) Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres. Abh Akad Wiss Berlin 1858:1–62

    Google Scholar 

  • Nakamura Y, Suzuki N (2015) Phaeodaria: diverse marine cercozoans of world-wide distribution. In: Ohtsuka S et al (eds) Marine protists: diversity and dynamics. Springer, Tokyo, pp 223–249

    Google Scholar 

  • Nigrini C (1991) Composition and biostratigraphy of radiolarian assemblages from an area of upwelling (northwestern Arabian Sea, Leg 117). In: Prell WJ, Niitsuma N (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 117. Ocean Drilling Program, College Station, pp 89–126

    Google Scholar 

  • Nigrini C, Caulet (1992) Late Neogene radiolarian assemblages characteristic of Indo-Pacific areas of upwelling. Micropaleontology 39:139–164

    Article  Google Scholar 

  • Not F et al (2007) Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol 9:1233–1252

    Article  CAS  PubMed  Google Scholar 

  • Not F et al (2009) New insights into the diversity of marine picoeukaryotes. PLos One 4:e7143

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ogane K et al (2009) First application of PDMPO to examine silicification in polycystine Radiolaria. Plankton Benthos Res 4:89–94

    Article  Google Scholar 

  • Ogane K et al (2010) Direct observation of the skeletal growth patterns of polycystine radiolarians using a fluorescent marker. Mar Micropaleontol 77:137–144

    Article  Google Scholar 

  • Okazaki Y et al (2003) Radiolarians under the seasonally sea-ice covered conditions in the Okhotsk Sea: fluxes and their implications for paleoceanography. Mar Micropaleontol 49:195–230

    Article  Google Scholar 

  • Okazaki Y, Takahashi K, Asahi H (2008) Temporal flux of radiolarians along the W-E transect in the central and western equatorial Pacific, 1999–2002. Micropaleontology 54:71–86

    Google Scholar 

  • Petrushevskaya MG (1971) Radiolyarii Nassellaria v planktone mirovogo okeana. Tr Zool Inst Akad Nauk SSR 9(17):1–294

    Google Scholar 

  • Probert I et al (2014) Brandtodinium gen. nov. and B. nutriculum comb. nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. J Phycol 50:388–399

    Article  CAS  Google Scholar 

  • Reshetnyak VV (1955) Veretnikal’noe raspredelenie radiolyariy Kurilo-Kamchatskoy vpadiny. Tr Zool Inst Akad Nauk SSSR 21:94–101

    Google Scholar 

  • Reshetnyak VV (1981) Fauna SSSR, Akantarii. Akad Nauk SSSR Zool Inst 123:1–221

    Google Scholar 

  • Schewiakoff W (1926) Die Acantharien des Golfes von Neapel. Fauna Flora Golfes Neapel 37:1–755

    Google Scholar 

  • Sierra R et al (2013) Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel’s Radiolaria. Mol Phylogenet Evol 67:53–59

    Article  PubMed  Google Scholar 

  • Stepanjants SD et al (2006) A review of biopolarity concepts: history and examples from Radiolaria and Medusozoa (Cnidaria). Mar Biol Res 2:200–241

    Article  Google Scholar 

  • Sugiyama K (1992) New spumellarians (Radiolaria) from the Lower Miocene Toyohama Formation, Morozaki Group, central Japan. Bull Mizunami Fossil Mus 19:193–197

    Google Scholar 

  • Sugiyama K, Anderson OR (1997a) Experimental and observational studies of radiolarian physiological ecology, 6. Effects of silicate-supplemented seawater on the longevity and weight gain of spongiose radiolarians Spongaster tetras and Dictyocoryne truncatum. Mar Micropaleontol 29:159–172

    Article  Google Scholar 

  • Sugiyama K, Anderson OR (1997b) Correlated fine structural and light microscopic analyses of living nassellarians Eucyrtidium hexagonatum Haeckel, Pterocorys zancleus (Müller) and Spirocyrtis scalaris Haeckel. News Osaka Micropaleontol 10:311–337

    Google Scholar 

  • Sugiyama K et al (2008) Pseudopodial features and feeding behavior of living nassellarians Eucyrtidium hexagonatum Haeckel, Pterocorys zancleus (Müller) and Dictyocodon prometheus Haeckel. Paleontol Res 12:209–222

    Article  Google Scholar 

  • Suzuki N (2005) Physiological axopodial activity of Rhizosphaera trigonacantha Haeckel (a spheroidal radiolarian, Polycystina, Protista). Mar Micropaleontol 54:141–153

    Article  Google Scholar 

  • Suzuki N (2006) Ontogenetic growth and variation in the skeletal structure of two Late Neogene Sphaeropyle species (Polycystina radiolarians). J Paleontol 80:849–866

    Article  Google Scholar 

  • Suzuki N, Aita Y (2011) Radiolaria: achievement and unsolved issues: taxonomy and cytology. Plankton Benthos Res 6:69–91

    Article  Google Scholar 

  • Suzuki N, Oba M (2015) Oldest fossil records of marine protists and the geologic history toward the establishment of the modern-type marine protist world. In: Ohtsuka S et al (eds) Marine protists: diversity and dynamics. Springer, Tokyo, pp 359–394

    Google Scholar 

  • Suzuki N, Sugiyama K (2001) Regular axopodial activity of Diplosphaera hexagonalis Haeckel (Spheroidal spumellarian, Radiolaria). Paleontol Res 5:131–140

    Google Scholar 

  • Suzuki N, Kurihara T, Matsuoka A (2009a) Sporogenesis of an extracellular cell chain from the spheroidal radiolarian host Haliommilla capillaceum (Haeckel), Polycystina, Protista. Mar Micropaleontol 72:157–164

    Article  Google Scholar 

  • Suzuki N et al (2009b) Distribution patterns of radiolarian nuclei and symbionts using DAPI-fluorescence. Bull Natl Mus Nat Sci B 35:169–182

    Google Scholar 

  • Suzuki N, Ogane K, Aita Y (2012) 4.1.2 Radiolaria. In: Tanimura Y, Tuji A (eds) Microfossils: their microscopic world explored, A book series from the National Museum of Nature and Science, no 13. Tokai University Press, Tokyo, pp 76–91

    Google Scholar 

  • Suzuki N et al (2013) Patchwork silicification and disposal activity of siliceous fragments of a polycystine radiolarian. Rev Micropaléontol 56:63–74

    Article  Google Scholar 

  • Swanberg NR (1983) The trophic role of colonial Radiolaria in oligotrophic oceanic environments. Limnol Oceanogr 28:655–666

    Article  Google Scholar 

  • Swanberg NR, Anderson OR (1981) Collozoum caudatum sp. nov.: a giant colonial radiolarian from equatorial and Gulf Stream waters. Deep-Sea Res 28A:1033–1047

    Article  Google Scholar 

  • Swanberg NR, Bjørklund KR (1987) The pre-cephalic development of the skeleton of Amphimelissa setosa (Actinopoda: Nassellarida). Mar Micropaleontol 11:333–341

    Article  Google Scholar 

  • Swanberg NR, Caron DA (1991) Patterns of sarcodine feeding in epipelagic oceanic plankton. J Plankton Res 13:287–312

    Article  Google Scholar 

  • Swanberg NR, Eide LK (1992) The radiolarian fauna at the ice edge in the Greenland Sea during summer, 1988. J Mar Res 50:297–320

    Article  CAS  Google Scholar 

  • Swanberg NR, Harbison GR (1980) The ecology of Collozoum longiforme sp. nov., a new colonial radiolarian from the equatorial Atlantic Ocean. Deep-Sea Res 27A:715–732

    Article  Google Scholar 

  • Swanberg NR et al (1986) A comparative study of predation in two Caribbean radiolarian population. Mar Microbial Food Webs 1:105–118

    Google Scholar 

  • Takahashi K, Ling HY (1980) Distribution of Sticholonche (Radiolaria) in the upper 800 m of the waters in the equatorial Pacific. Mar Micropaleontol 5:311–319

    Article  Google Scholar 

  • Takahashi K, Yamashita H (2004) Temporal and vertical flux changes of radiolarians in the western and central equatorial Pacific during the 1999 La Niña conditions. J Geol Soc Japan 110:463–479

    Article  Google Scholar 

  • Takahashi O, Mayama S, Matsuoka A (2003) Host-symbiont associations of polycystine Radiolaria: epifluorescence microscopic observation of living Radiolaria. Mar Micropaleontol 49:187–194

    Article  Google Scholar 

  • Tan Z-Y, Gao H-X, Su X-G (1978) The quantitative distribution of Sticholonche zanclea in the western part of the East China Sea. Oceanol Limnol Sin 9:59

    Google Scholar 

  • Tchang T-R, Tan Z-Y (1964) Studies on the Radiolaria of the East China Sea. I. Acantharia. Stud Mar Sin 6:33–78

    Google Scholar 

  • Theide J (1981) Skeletal plankton and nekton in upwelling water masses off northwestern South America and Northwest Africa. In: Suess E, Thiede J (eds) Coastal upwelling, ITS sedimental record. Part A: responses of the sedimentary regime to present coastal upwelling. Plenum Press, New York, pp 183–207

    Google Scholar 

  • Théodoridès J (1982) Parasitology of marine zooplankton. In: Blaxter JHS, Southward AJ (eds) Advances in marine biology, vol 25. Academic, Tokyo, pp 117–117

    Google Scholar 

  • Vénec-Peyré MT, Caulet JP (2000) Paleoproductivity changes in the upwelling system of Socotra (Somali Basin, NW Indian Ocean) during the last 72,000 years: evidence from biological signatures. Mar Micropaleontol 40:321–344

    Article  Google Scholar 

  • Welling LA, Pisias NG (1998) How do radiolarian sediment assemblages represent surface ocean ecology in the central equatorial Pacific? Paleoceanography 132:131–149

    Article  Google Scholar 

  • Wilcock JR et al (1988) Crystallographic and morphological studies of the celestite of the acantharian species Phyllostaurus siculus. Proc R Soc Lond B 233:393–405

    Article  Google Scholar 

  • Yuasa T, Takahashi O (2014) Ultrastructural morphology of the reproductive swarmers of Sphaerozoum punctatum (Huxley) from the East China Sea. Eur J Protistol 50:194–204

    Article  PubMed  Google Scholar 

  • Yuasa T et al (2012) Ultrastructural and molecular characterization of cyanobacteral symbionts in Dictyocoryne profunda (polycystine radiolaria). Symbiosis 57:51–55

    Article  CAS  Google Scholar 

  • Zhang et al (2009) Distribution of polycystine radiolarians in the northern South China Sea in September 2005. Mar Micropaleontol 70:20–38

    Article  Google Scholar 

Download references

Acknowledgments

Dr. K. R. Matsuzaki greatly advised us on the content of this chapter and gave comprehensive comments to improve it. This study was partly supported by the Cooperative Research Project with the Japan Science and Technology Agency (JST) and Centre National de la Recherche Scientifique (CNRS, France) “Morpho-molecular Diversity Assessment of Ecologically, Evolutionary, and Geologically Relevant Marine Plankton (Radiolaria)” We thank Dr. Giuseppe Cortese for critical review of this manscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritoshi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, N., Not, F. (2015). Biology and Ecology of Radiolaria. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_8

Download citation

Publish with us

Policies and ethics