Skip to main content

Structures of Nascent Polypeptide Chain-Dependent-Stalled Ribosome Complexes

  • Chapter
  • First Online:
Regulatory Nascent Polypeptides

Abstract

As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit. Rather than a passive conduit for the nascent chain, accumulating evidence indicates that specific nascent polypeptide chains can establish distinct interactions with the ribosomal tunnel to induce translation arrest. Cryo-EM structures of nascent peptide-dependent stalled ribosome complexes (SRC) have provided the first structural insights into how the nascent polypeptide chain interacts with the ribosomal tunnel to inhibit ribosome function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderete JP, Jarrahian S, Geballe AP (1999) Translational effects of mutations and polymorphisms in a repressive upstream open reading frame of the human cytomegalovirus UL4 gene. J Virol 73:8330–8337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhushan S, Gartmann M, Halic M, Armache JP, Jarasch A, Mielke T, Berninghausen O, Wilson DN, Beckmann R (2010a) Alpha-helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nat Struct Mol Biol 17:313–317

    Article  CAS  PubMed  Google Scholar 

  • Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN, Beckmann R (2010b) Structural basis for translational stalling by human cytomegalovirus (hCMV) and fungal arginine attenuator peptide (AAP). Mol Cell 40:138–146

    Article  CAS  PubMed  Google Scholar 

  • Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T, Berninghausen O, Wilson DN, Beckmann R (2011) SecM-stalled ribosomes adopt an altered geometry at the peptidyltransferase center. PLoS Biol 19:e1000581

    Article  Google Scholar 

  • Butkus ME, Prundeanu LB, Oliver DB (2003) Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J Bacteriol 185:6719–6722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao JH, Geballe AP (1996) Inhibition of nascent-peptide release at translation termination. Mol Cell Biol 16:7109–7114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera LR, Yanofsky C (2008) Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of Tna operon expression. J Bacteriol 190:4791–4797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera L, Rajagopal S, Squires C, Yanofsky C (2005) Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol Cell 19:333–343

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Vera LR, New A, Squires C, Yanofsky C (2007) Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center. J Bacteriol 189:3140–3146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Degnin CR, Schleiss MR, Cao J, Geballe AP (1993) Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. J Virol 67:5514–5521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delbecq P, Calvo O, Filipkowski RK, Pierard A, Messenguy F (2000) Functional analysis of the leader peptide of the yeast gene CPA1 and heterologous regulation by other fungal peptides. Curr Genet 38:105–112

    Article  CAS  PubMed  Google Scholar 

  • Fang P, Spevak C, Wu C, Sachs M (2004) A nascent polypeptide domain that can regulate translation elongation. Proc Natl Acad Sci USA 101:4059–4064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freitag M, Dighde N, Sachs MS (1996) A UV-induced mutation in Neurospora that affects translational regulation in response to arginine. Genetics 142:117–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fulle S, Gohlke H (2009) Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. J Mol Biol 387:502–517

    Article  CAS  PubMed  Google Scholar 

  • Geballe AP, Spaete RR, Mocarski ES (1986) A cis-acting element within the 5′ leader of a cytomegalovirus beta transcript determines kinetic class. Cell 46:865–872

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Yanofsky C (2002) Instruction of translating ribosome by nascent peptide. Science 297:1864–1867

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Ito K, Nakamura Y, Yanofsky C (2001) The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNA(Pro). Proc Natl Acad Sci USA 98:8997–9001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen JL, Schmeing TM, Moore PB, Steitz TA (2002) Structural insights into peptide bond formation. Proc Natl Acad Sci USA 99:11670–11675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofer A, Bussiere C, Johnson AW (2007) Mutational analysis of the ribosomal protein Rpl10 from yeast. J Biol Chem 282:32630–32639

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Chiba S (2013) Arrest peptides: cis-acting modulators of translation. Annu Rev Biochem 82:171–202

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Chiba S, Pogliano K (2010) Divergent stalling sequences sense and control cellular physiology. Biochem Biophys Res Commun 393:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence MG, Lindahl L, Zengel JM (2008) Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel. J Bacteriol 190:5862–5869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muto H, Nakatogawa H, Ito K (2006) Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol Cell 22:545–552

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Ito K (2001) Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol Cell 7:185–192

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Ito K (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108:629–636

    Article  CAS  PubMed  Google Scholar 

  • Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC (2009) Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci USA 106:50–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature (Lond) 438:520–524

    Article  CAS  Google Scholar 

  • Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K et al (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326:1412–1415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selmer M, Dunham C, Murphy FT, Weixlbaumer A, Petry S, Kelley A, Weir J, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  CAS  PubMed  Google Scholar 

  • Simonovic M, Steitz TA (2009) A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Biochim Biophys Acta 1789:612–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vazquez-Laslop N, Thum C, Mankin AS (2008) Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30:190–202

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J 29:3108–3117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Sachs MS (1997a) Arginine-specific regulation mediated by the Neurospora crassa arg-2 upstream open reading frame in a homologous, cell-free in vitro translation system. J Biol Chem 272:255–261

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Sachs MS (1997b) Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa. Mol Cell Biol 17:4904–4913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weixlbaumer A, Jin H, Neubauer C, Voorhees R, Petry S, Kelley A, Ramakrishnan V (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson DN, Beckmann R (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 21:1–10

    Article  Google Scholar 

  • Wilson DN, Bhushan S, Becker T, Beckmann R (2011) Nascent polypeptide chains within the ribosomal tunnel analyzed by cryo-EM. In: Rodnina MV, Wintermeyer W, Green R (eds) The ribosome: structure, function, & evolution. Springer, New York, pp 387–398

    Google Scholar 

  • Yang R, Cruz-Vera LR, Yanofsky C (2009) 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction. J Bacteriol 191:3445–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yap MN, Bernstein HD (2009) The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. Mol Cell 34:201–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel N. Wilson or Roland Beckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Wilson, D.N., Beckmann, R. (2014). Structures of Nascent Polypeptide Chain-Dependent-Stalled Ribosome Complexes. In: Ito, K. (eds) Regulatory Nascent Polypeptides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55052-5_3

Download citation

Publish with us

Policies and ethics