Skip to main content

Molecular Architecture of Glutamate Signaling Pathway in Glaucomatous Optic Neuropathy

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 772 Accesses

Abstract

Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate have been reported in various neurological diseases, including glaucomatous optic neuropathy (GON). Glutamate excitotoxicity triggered by overstimulation of N-methyl-d-aspartate (NMDA)-type glutamate receptors may contribute to retinal ganglion cell (RGC) degeneration in glaucoma and other retinal neuronal cell death in ischemic insult including diabetic retinopathy. Neuroprotective effects with the blockage of overstimulated NMDA receptors were found in several previous studies in RGC degeneration models, such as the axotomy, ischemia, and laser-induced high intraocular pressure models. Although there is a great deal of evidence for elevated glutamate in GON, a clinical trial of memantine, an NMDA receptor antagonist, was unsuccessful. Thus, excitotoxicity is not recognized as a primary factor in GON, although glutamate leaking from dying/dead RGCs or compromised glia may contribute to the secondary death of neighboring RGCs via excessive activation of NMDA receptors during the development of glaucoma. Therefore, appropriate modulation of NMDA receptor-mediated retinal excitotoxicity remains to be elucidated and may become a possible therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas DR, Newhouse JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58:193–201

    Article  CAS  PubMed  Google Scholar 

  2. Tapia R (1996) Release and uptake of glutamate as related to excitotoxicity. Rev Bras Biol 56:165–174

    PubMed  Google Scholar 

  3. Kalloniatis M (1995) Amino acids in neurotransmission and disease. J Am Optom Assoc 66:750–757

    CAS  PubMed  Google Scholar 

  4. Haefliger IO, Fleischhauer JC, Flammer J (2000) In glaucoma, should enthusiasm about neuroprotection be tempered by the experience obtained in other neurodegenerative disorders? Eye 14:464–472

    Article  PubMed  Google Scholar 

  5. Dreyer EB, Zurakowski D, Schumer RA et al (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299–305

    Article  CAS  PubMed  Google Scholar 

  6. Brooks DE, Garcia GA, Dreyer EB et al (1997) Vitreous body glutamate concentration in dogs with glaucoma. Am J Vet Res 58:864–867

    CAS  PubMed  Google Scholar 

  7. Levkovitch-Verbin H, Martin KR, Quigley HA et al (2002) Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection. J Glaucoma 11:396–405

    Article  PubMed  Google Scholar 

  8. Wamsley S, Gabelt BT, Dahl DB et al (2005) Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma. Arch Ophthalmol 123:64–70

    Article  CAS  PubMed  Google Scholar 

  9. Kim JH, Lee NY, Jung SW et al (2007) Expression of N-methyl-d-aspartate receptor 1 in rats with chronic ocular hypertension. Neuroscience 149:908–916

    Article  CAS  PubMed  Google Scholar 

  10. Luo XG, Chiu K, Lau FH et al (2009) The selective vulnerability of retinal ganglion cells in rat chronic ocular hypertension model at early phase. Cell Mol Neurobiol 29:1143–1151

    Article  PubMed  Google Scholar 

  11. Fu CT, Sretavan DW (2012) Ectopic vesicular glutamate release at the optic nerve head and axon loss in mouse experimental glaucoma. J Neurosci 32:15859–15876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hamberger A, Nyström B, Sellström A et al (1976) Amino acid transport in isolated neurons and glia. Adv Exp Med Biol 69:221–236

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Munoz M, Young SJ, Groves PM (1991) Terminal excitability of the corticostriatal pathway. II. Regulation by glutamate receptor stimulation. Brain Res 551:207–215

    Article  CAS  PubMed  Google Scholar 

  14. Sugioka M, Fukuda Y, Yamashita M (1998) Development of glutamate-induced intracellular Ca2+ rise in the embryonic chick retina. J Neurobiol 34:113–125

    Article  CAS  PubMed  Google Scholar 

  15. King AE, Chung RS, Vickers JC et al (2006) Localization of glutamate receptors in developing cortical neurons in culture and relationship to susceptibility to excitotoxicity. J Comp Neurol 498:277–294

    Article  CAS  PubMed  Google Scholar 

  16. Herkert M, Röttger S, Becker CM (1998) The NMDA receptor subunit NR2B of neonatal rat brain: complex formation and enrichment in axonal growth cones. Eur J Neurosci 10:1553–1562

    Article  CAS  PubMed  Google Scholar 

  17. Haberecht MF, Redburn DA (1996) High levels of extracellular glutamate are present in retina during neonatal development. Neurochem Res 21:285–291

    Article  CAS  PubMed  Google Scholar 

  18. Storck T, Schulte S, Hofmann K (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pines G, Danbolt NC, Bjørås M et al (1992) Cloning and expression of a rat brain l-glutamate transporter. Nature 360:464–467

    Article  CAS  PubMed  Google Scholar 

  20. Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Article  CAS  PubMed  Google Scholar 

  21. Fairman WA, Vandenberg RJ, Arriza JL et al (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  CAS  PubMed  Google Scholar 

  22. Arriza JL, Eliasof S, Kavanaugh MP et al (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na++ K+]-coupled l-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 2:295–310

    Article  Google Scholar 

  24. Lehre KP, Levy LM, Ottersen OP et al (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    CAS  PubMed  Google Scholar 

  25. Levy LM, Lehre KP, Rolstad B et al (1993) A monoclonal antibody raised against an [Na(+)+K+]coupled l-glutamate transporter purified from rat brain confirms glial cell localization. FEBS Lett 317:79–84

    Article  CAS  PubMed  Google Scholar 

  26. Izumi Y, Shimamoto K, Benz AM et al (2002) Glutamate transporters and retinal excitotoxicity. Glia 39:58–68

    Article  PubMed  Google Scholar 

  27. Pow DV (2001) Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 34:27–38

    Article  CAS  PubMed  Google Scholar 

  28. Rauen T, Wiessner M (2000) Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem Int 37:179–189

    Article  CAS  PubMed  Google Scholar 

  29. Robinson MB (1998) The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int 33:479–491

    Article  CAS  PubMed  Google Scholar 

  30. Rauen T, Rothstein JD, Wässle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  31. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  32. Harada T, Harada C, Watanabe M et al (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc Natl Acad Sci USA 95:4663–4666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Harada T, Harada C, Nakamura K et al (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  35. Carroll RC, Zukin RS (2002) NMDA receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25:571–577

    Article  CAS  PubMed  Google Scholar 

  36. Li B, Chen N, Luo T, Otsu Y et al (2002) Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci 5:833–834

    Article  CAS  PubMed  Google Scholar 

  37. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618

    Article  CAS  PubMed  Google Scholar 

  38. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  PubMed  Google Scholar 

  39. Sucher NJ, Kohler K, Tenneti L et al (2003) N-methyl-d-aspartate receptor subunit NR3A in the retina: developmental expression, cellular localization, and functional aspects. Invest Ophthalmol Vis Sci 44:4451–4456

    Article  PubMed  Google Scholar 

  40. Prybylowski K, Wenthold RJ (2004) N-Methyl-d-aspartate receptors: subunit assembly and trafficking to the synapse. J Biol Chem 279:9673–9676

    Article  CAS  PubMed  Google Scholar 

  41. Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  42. Durand GM, Gregor P, Zheng X et al (1992) Cloning of an apparent splice variant of the rat N-methyl-d-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci USA 89:9359–9363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sugihara H, Moriyoshi K, Ishii T et al (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185:826–832

    Article  CAS  PubMed  Google Scholar 

  44. Chatterton JE, Awobuluyi M, Premkumar LS et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798

    Article  CAS  PubMed  Google Scholar 

  45. Monyer H, Burnashev N, Laurie DJ et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  CAS  PubMed  Google Scholar 

  46. Yao Y, Harrison CB, Freddolino PL et al (2008) Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J 27:2158–2170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Das S, Sasaki YF, Rothe T et al (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377–381

    Article  CAS  PubMed  Google Scholar 

  48. Chazot PL (2004) The NMDA receptor NR2B subunit: a valid therapeutic target for multiple CNS pathologies. Curr Med Chem 11:389–396

    Article  CAS  PubMed  Google Scholar 

  49. Luo J, Wang Y, Yasuda RP et al (1997) The majority of N-methyl-d-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51:79–86

    CAS  PubMed  Google Scholar 

  50. Cline HT, Tsien RW (1991) Glutamate-induced increases in intracellular Ca2+ in cultured frog tectal cells mediated by direct activation of NMDA receptor channels. Neuron 6:259–267

    Article  CAS  PubMed  Google Scholar 

  51. MacDermott AB, Mayer ML, Westbrook GL et al (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  CAS  PubMed  Google Scholar 

  52. Siliprandi R, Canella R, Carmignoto G et al (1992) N-methyl-d-aspartate-induced neurotoxicity in the adult rat retina. Vis Neurosci 8:567–573

    Article  CAS  PubMed  Google Scholar 

  53. Sucher NJ, Wong LA, Lipton SA (1990) Redox modulation of NMDA receptor-mediated Ca2+ flux in mammalian central neurons. Neuroreport 1:29–32

    Article  CAS  PubMed  Google Scholar 

  54. Sucher NJ, Aizenman E, Lipton SA (1991) N-methyl-d-aspartate antagonists prevent kainate neurotoxicity in rat retinal ganglion cells in vitro. J Neurosci 11:966–971

    CAS  PubMed  Google Scholar 

  55. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  CAS  PubMed  Google Scholar 

  56. Dong CJ, Guo Y, Agey P et al (2008) Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci 49:4515–4522

    Article  PubMed  Google Scholar 

  57. Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 20:5037–5044

    CAS  PubMed  Google Scholar 

  58. Lam TT, Abler AS, Kwong JM et al (1999) N-methyl-d-aspartate (NMDA)-induced apoptosis in rat retina. Invest Ophthalmol Vis Sci 40:2391–2397

    CAS  PubMed  Google Scholar 

  59. Lam TT, Siew E, Chu R et al (1997) Ameliorative effect of MK-801 on retinal ischemia. J Ocul Pharmacol Ther 13:129–137

    Article  CAS  PubMed  Google Scholar 

  60. Laabich A, Li G, Cooper NG (2001) Characterization of apoptosis-genes associated with NMDA mediated cell death in the adult rat retina. Brain Res Mol Brain Res 91:34–42

    Article  CAS  PubMed  Google Scholar 

  61. Chiu K, Lam TT, Ying Li WW et al (2005) Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 1046:207–215

    Article  CAS  PubMed  Google Scholar 

  62. Takeda H, Kitaoka Y, Hayashi Y et al (2007) Calcium/calmodulin-dependent protein kinase II regulates the phosphorylation of CREB in NMDA-induced retinal neurotoxicity. Brain Res 1184:306–315

    Article  CAS  PubMed  Google Scholar 

  63. Yu SW, Wang H, Dawson TM et al (2003) Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis 14:303–317

    Article  CAS  PubMed  Google Scholar 

  64. Goebel DJ, Winkler BS (2006) Blockade of PARP activity attenuates poly(ADP-ribosyl)ation but offers only partial neuroprotection against NMDA-induced cell death in the rat retina. J Neurochem 98:1732–1745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Munemasa Y, Ohtani-Kaneko R, Kitaoka Y et al (2005) Contribution of mitogen-activated protein kinases to NMDA-induced neurotoxicity in the rat retina. Brain Res 1044:227–240

    Article  CAS  PubMed  Google Scholar 

  66. Kitaoka Y, Kumai T, Kitaoka Y et al (2004) Nuclear factor-kappa B p65 in NMDA-induced retinal neurotoxicity. Brain Res Mol Brain Res 131:8–16

    Article  CAS  PubMed  Google Scholar 

  67. Munemasa Y, Ohtani-Kaneko R, Kitaoka Y (2006) Pro-apoptotic role of c-Jun in NMDA-induced neurotoxicity in the rat retina. J Neurosci Res 83:907–918

    Article  CAS  PubMed  Google Scholar 

  68. Takada K, Munemasa Y, Kuribayashi J et al (2011) Protective effect of thalidomide against N-methyl-d-aspartate-induced retinal neurotoxicity. J Neurosci Res 89:1596–1604

    Article  CAS  PubMed  Google Scholar 

  69. Kitaoka Y, Munemasa Y, Nakazawa T et al (2007) NMDA-induced interleukin-1beta expression is mediated by nuclear factor-kappa B p65 in the retina. Brain Res 1142:247–255

    Article  CAS  PubMed  Google Scholar 

  70. Kuribayashi J, Kitaoka Y, Munemasa Y et al (2010) Kinesin-1 and degenerative changes in optic nerve axons in NMDA-induced neurotoxicity. Brain Res 1362:133–140

    Article  CAS  PubMed  Google Scholar 

  71. Quigley HA, Nickells RW, Kerrigan LA et al (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774–786

    CAS  PubMed  Google Scholar 

  72. Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18:39–57

    Article  CAS  PubMed  Google Scholar 

  73. Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41:1940–1944

    CAS  PubMed  Google Scholar 

  74. Flammer J, Orgül S (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 17:267–289

    Article  CAS  PubMed  Google Scholar 

  75. Osborne NN, Melena J, Chidlow G et al (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol 85:1252–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunari Munemasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Munemasa, Y. (2014). Molecular Architecture of Glutamate Signaling Pathway in Glaucomatous Optic Neuropathy. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics