Skip to main content

Causal Dynamical Triangulation

  • Chapter
  • First Online:
Space-Time Foliation in Quantum Gravity

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we argue exactly solvable 2-dimensional Causal Dynamical Triangulations (CDT) and their generalization called generalized CDT. In 2.1 we introduce new multicritical models which describe the matter-coupled version of CDT and generalized CDT; especially we focus on the third-order multicritical point where the conformal field theory with the central charge, \(c=-22/5\), couples to (the generalized) CDT. In 2.2 we extend the generalized CDT based on the string field theory of the generalized CDT in such a way that the space-time foliation is preserved; the wavefunction of the Universe in the extended model can be obtained perturbatively. We also show that there exist a matrix model description of the extended model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This value is considered to be the gravity-dressed edge singularity of the dimer model [2]. In the dimer model, \(\sigma = 1/6\).

  2. 2.

    While completing the article [4] we were informed by Zohren that he and Atkin [9] have obtained results which are identical to some of our results. We thank Stefan for informing us of these results prior to publication.

  3. 3.

    The authors derived the more general result with arbitrary \(\alpha \), but here we restricted our situation to that with \(\alpha =0\).

  4. 4.

    In [27], the authors derived the general saddle-point equation beyond the large-\(N\) limit. The general saddle-point equation indeed coincides with the SDE with arbitrary \(\alpha \) by the treatment, \(\alpha = 1/N^{2}\).

  5. 5.

    In fact, it is possible to include the interactions, \(\int dL\psi ^{\dagger }_{-}(L) \fancyscript{H}_{0}(L,\varLambda _{\text {cdt}})\psi _{+}(L)\) and its spin-flipped term. However, because of the \(\mathbb {Z}_{2}\)-symmetry as to the spin reflection, such terms merely cause a constant shift of the string coupling constant, so that we have not included these terms in the Hamiltonian.

References

  1. Kazakov, V. A. (1986). Ising model on a dynamical planar random lattice: Exact solution. Physics Letter A, 119, 140.

    Article  ADS  MathSciNet  Google Scholar 

  2. Staudacher, M. (1990). The Yang-lee edge singularity on a dynamical planar random surface. Nuclear Physics B, 336, 349.

    Article  ADS  MathSciNet  Google Scholar 

  3. Ambjorn, J., & Loll, R. (1998). Nonperturbative Lorentzian quantum gravity, causality and topology change. Nuclear Physics B, 536, 407. [hep-th/9805108].

    Article  ADS  MathSciNet  Google Scholar 

  4. Ambjorn, J., Glaser, L., Gorlich, A., & Sato, Y. (2012). New multicritical matrix models and multicritical 2d CDT. Physics Letter B, 712, 109. arXiv:1202.4435 [hep-th].

  5. Moore, G. W., Seiberg, N., & Staudacher, M. (1991). Nuclear Physics B, 362, 665.

    Article  ADS  MathSciNet  Google Scholar 

  6. Glaser, L. (2012). Coupling dimers to CDT. arXiv:1210.4063 [hep-th].

  7. Atkin, M. R., & Zohren, S. (2012). On the quantum geometry of multi-critical CDT. JHEP, 1211, 037. arXiv:1203.5034 [hep-th].

  8. Watabiki, Y. (1993). Analytic study of fractal structure of quantized surface in two-dimensional quantum gravity. Progress of Theoretical Physics Supplement, 114, 1.

    Article  ADS  MathSciNet  Google Scholar 

  9. Atkin, M. R., & Zohren, S. (2012). An analytical analysis of CDT coupled to dimer-like matter. Physics Letter B, 712, 445. arXiv:1202.4322 [hep-th].

  10. Kawai, H., Kawamoto, N., Mogami, T., & Watabiki, Y. (1993). Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time. Physics Letter B, 306, 19. [hep-th/9302133].

    Article  ADS  MathSciNet  Google Scholar 

  11. Ambjorn, J., & Watabiki, Y. (1995). Scaling in quantum gravity. Nuclear Physics B, 445, 129. [hep-th/9501049].

    Article  ADS  MathSciNet  Google Scholar 

  12. Aoki, H., Kawai, H., Nishimura, J., & Tsuchiya, A. (1996). Operator product expansion in two-dimensional quantum gravity. Nuclear Physics B, 474, 512. [hep-th/9511117].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Ambjorn, J., Anagnostopoulos, K. N., Ichihara, T., Jensen, L., Kawamoto, N., Watabiki, Y., et al. (1997). Quantum geometry of topological gravity. Physics Letter B, 397, 177. [hep-lat/9611032].

    Article  ADS  MathSciNet  Google Scholar 

  14. Ambjorn, J., Anagnostopoulos, K., Ichihara, T., Jensen, L., Kawamoto, N., Watabiki, Y., et al. (1998). The quantum space-time of \(\rm {c}= -2\) gravity. Nuclear Physics B, 511, 673. [hep-lat/9706009].

    Article  ADS  MathSciNet  Google Scholar 

  15. Ambjorn, J., & Anagnostopoulos, K. N. (1997). Quantum geometry of 2-D gravity coupled to unitary matter. Nuclear Physics B, 497, 445. [hep-lat/9701006].

    Article  ADS  MathSciNet  Google Scholar 

  16. Ambjorn, J., Anagnostopoulos, K. N., Magnea, U., & Thorleifsson, G. (1996). Geometrical interpretation of the KPZ exponents. Physics Letter B, 388, 713. [hep-lat/9606012].

    Article  ADS  MathSciNet  Google Scholar 

  17. Duplantier, B. (2011) The hausdorff dimension of two-dimensional quantum gravity. arXiv:1108.3327 [math-ph].

  18. Ambjorn, J., Anagnostopoulos, K. N., Loll, R., & Pushkina, I. (2009). Shaken, but not stirred: Potts model coupled to quantum gravity. Nuclear Physics B, 807, 251. arXiv:0806.3506 [hep-lat].

  19. Ambjorn, J., Anagnostopoulos, K. N., & Loll, R. (1999). A new perspective on matter coupling in 2-D quantum gravity. Physics Review D, 60, 104035. [hep-th/9904012].

    Article  ADS  MathSciNet  Google Scholar 

  20. Ambjorn, J., Anagnostopoulos, K. N., & Loll, R. (2000). Crossing the \(\rm {c} = 1\) barrier in 2-D Lorentzian quantum gravity. Physics Review D, 61, 044010. [hep-lat/9909129].

    Article  ADS  MathSciNet  Google Scholar 

  21. Ambjorn, J., Goerlich, A. T., Jurkiewicz, J., & Zhang, H.-G. (2012). Pseudo-topological transitions in 2D gravity models coupled to massless scalar fields. Nuclear Physics B, 863, 421. arXiv:1201.1590 [gr-qc].

  22. Fuji, H., Sato, Y., & Watabiki, Y. (2011). Causal dynamical triangulation with extended interactions in \(1+1\) dimensions. Physics Letter B, 704, 582. arXiv:1108.0552 [hep-th].

  23. Ishibashi, N., & Kawai, H. (1993). String field theory of noncritical strings. Physics Letter B, 314, 190. [hep-th/9307045].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Ishibashi, N., & Kawai, H. (1994). String field theory of c ¡= 1 noncritical strings. Physics Letter B, 322, 67. [hep-th/9312047].

    Article  ADS  MATH  Google Scholar 

  25. Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A string field theory based on causal dynamical triangulations. JHEP, 0805, 032. arXiv:0802.0719 [hep-th].

  26. Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A new continuum limit of matrix models. Physics Letter B, 670, 224. arXiv:0810.2408 [hep-th].

  27. Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A matrix model for 2D quantum gravity defined by causal dynamical triangulations. Physics Letter B, 665, 252. arXiv:0804.0252 [hep-th].

  28. Kostov, I. K. (1989). Nuclear Physics B, 326, 583.

    Article  ADS  MathSciNet  Google Scholar 

  29. Kostov, I. K. (1991). Physics Letter B, 266, 42.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Kostov, I. K. (1992). Nuclear Physics B, 376, 539.

    Article  ADS  MathSciNet  Google Scholar 

  31. Kostov, I. K. (1989). O (n) vector model on a planar random lattice: Spectrum of anomalous dimensions. Modern Physics Letters A, 4, 217.

    Article  ADS  MathSciNet  Google Scholar 

  32. Ambjorn, J., Anagnostopoulos, K. N., Jurkiewicz, J., & Kristjansen, C. F. (1998). The concept of time in 2-D gravity. JHEP, 9804, 016. [hep-th/9802020].

    Article  ADS  MathSciNet  Google Scholar 

  33. Ambjorn, J., Kristjansen, C., & Watabiki, Y. (1997). The two point function of \(\rm {c} = -2\) matter coupled to 2-D quantum gravity. Nuclear Physics B, 504, 555. [hep-th/9705202].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Sato .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sato, Y. (2014). Causal Dynamical Triangulation. In: Space-Time Foliation in Quantum Gravity. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54947-5_2

Download citation

Publish with us

Policies and ethics