Skip to main content

Two Applications of Geometric Optimal Control to the Dynamics of Spin Particles

  • Conference paper
  • First Online:
The Impact of Applications on Mathematics

Part of the book series: Mathematics for Industry ((MFI,volume 1))

Abstract

The purpose of this article is to present the application of methods from geometric optimal control to two problems in the dynamics of spin particles. First, we consider the saturation problem for a single spin system and second, the control of a linear chain of spin particles with Ising couplings. For both problems the minimizers are parameterized using Pontryagin Maximum Principle and the optimal solution is found by a careful analysis of the corresponding equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint, vol 87 of Encyclopaedia of Mathematical Sciences. Control Theory and Optimization, II, xiv+412 pp. Springer, Berlin (2004)

    Google Scholar 

  2. Agrachev, A., Boscain, U., Sigalotti, M.: A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst. 20(4), 801–822 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, V.I.: Mathematical methods of classical mechanics, Translated from the Russian by Vogtmann, K., and Weinstein, A., 2nd edn. Graduate Texts in Mathematics, vol 60, xvi+508 pp. Springer, New York (1989)

    Google Scholar 

  4. Birkhoff, G.D.: Dynamical Systems, vol IX. American society colloquium publications (1927)

    Google Scholar 

  5. Bolsinov, V., Fomenko, A.T.: Integrable geodesic flows on two-dimensional surfaces. In: Monographs in Contemporary Mathematrics. Kluwer Academic, Dordretcht (2000)

    Google Scholar 

  6. Bonnard, B., Chyba, M.: Singular Trajectories and their Role in Control Theory, Vol 40 of Mathématiques & Applications, xvi+357 pp. Springer, Berlin (2003)

    Google Scholar 

  7. Bonnard, B., Caillau, J.B., Sinclair, R., Tanaka, M.: Tanaka Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1081–1098 (2009)

    Google Scholar 

  8. Bonnard, B., Caillau, J.B., Janin, G.: Conjugate-cut loci and injectivity domains on two-spheres of revolution. ESAIM Control Optim. Calc. Var. 19(2), 533–554 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonnard, B., Chyba, M., Marriott, J.: Singular trajectories and the contrast imaging problem in nuclear magnetic resonance. SIAM J. Control Optim. 51(2), 1325–1349 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonnard, B., Cots, O., Jassionnesse, L.: Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces. In: Stefani, G., Boscain, U., Gauthier, J.-P., Sarychev, A., Sigalotti, M. (eds.) Geometric Control Theory and sub-Riemannian Geometry. Springer INdAMSeries 5, pp. 53–72. Springer International Publishing, Switzerland (2014). doi:10.1007/978-3-319-02132-4_4

    Chapter  Google Scholar 

  11. Bonnard, B., Cots, O., Pomet, J.-B., Shcherbakova, N.: Riemannian metrics on 2d-manifolds related to the Euler-Poinsot rigid body motion. ESAIM Control Optim. Calc. Var. (to appear 2014)

    Google Scholar 

  12. Bonnnard, B., Caillau, J.B.: Metrics with equatorial singularities on the sphere. Annali di Matematica (to appear 2014). DOI10.1007/s10231-013-0333-y

  13. Boscain, U., Charlot, G., Gauthier, J.P., Guérin, S., Jauslin, H.-R.: Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43(5), 2107–2132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Boscain, U., Chambrion, T., Charlot, G.: Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy. Discrete Contin. Dyn. Syst. Ser. B 5(4), 957–990 (electronic, 2005)

    Google Scholar 

  15. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, vol 80 of Pure and Applied Mathematics, xv+628 pp. Academic Press, Inc., Harcourt Brace Jovanovich Publishers, New York (1978)

    Google Scholar 

  16. Itoh, J.-I., Kiyohara, K.: The cut loci and the conjugate loci on ellipsoids. Manuscripta Math. 114(2), 247–264 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Itoh, J.-I., Jin-ichi, K.: Kiyohara cut loci and conjugate loci on Liouville surfaces. Manuscripta Math. 136(1–2), 115–141 (2011)

    Google Scholar 

  18. Jurdjevic, V.: Geometric Control Theory, vol 52 of Cambridge Studies in Advanced Mathematics, xviii+492 pp. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  19. Khaneja, N., Glaser, S.J., Steffen, R.: Brockett sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer. Phys. Rev. A 65(3), part A, 032301, 11 pp (2002)

    Google Scholar 

  20. Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Singular extremals for the time-optimal control of dissipative spin particles. Phys. Rev. Lett. 104, 083001 (2010)

    Article  Google Scholar 

  21. Lapert, M., Zhang, Y., Janich, M., Glaser, S.J., Sugny, D.: Exploring the physical limits of saturation contrast in magnetic resonance imaging. Nature- Sci. Rep. 2, 589 (2012)

    Google Scholar 

  22. Lawden, D.F.: Elliptic Functions and Applications, vol 80 of Applied Mathematical Sciences, xiv+334 pp. Springer, New York (1989)

    Google Scholar 

  23. Levitt, M.H.: Spin Dynamics—Basics of Nuclear Magnetic Resonance. Wiley, New York (2001). 686 pp

    Google Scholar 

  24. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes, viii+360 pp. Translated from the Russian by Trirogoff, K.N. L. W. Neustadt Interscience Publishers, Wiley, New York (1962)

    Google Scholar 

  25. Yuan, H.: Geometry, Optimal Control and Quantum Computing. Harvard Ph.D. thesis (2006)

    Google Scholar 

  26. Yuan, H., Zeier, R., Khaneja, N.: Elliptic functions and efficient control of Ising spin chains with unequal couplings. Phys. Rev. A 77, 032340 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bonnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Bonnard, B., Chyba, M. (2014). Two Applications of Geometric Optimal Control to the Dynamics of Spin Particles. In: Wakayama, M., et al. The Impact of Applications on Mathematics. Mathematics for Industry, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54907-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54907-9_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54906-2

  • Online ISBN: 978-4-431-54907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics