Skip to main content

Visualizing Multivariate Data Using Singularity Theory

  • Conference paper
  • First Online:
The Impact of Applications on Mathematics

Abstract

This is a survey article on recent developments in visualization of large data, especially that of multivariate volume data. We present two essential ingredients. The first one is the mathematical background, especially the singularity theory of differentiable mappings, which enables us to capture topological features of given multivariate data in a mathematically rigorous way. The second one is a new development in computer science, called the joint contour net, which can encode topological structures of a given set of multivariate data in an efficient and robust way. Some applications to real data analysis are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Trans. Vis. Comput. Graph. 14(6), 1428–1435 (2008)

    Article  Google Scholar 

  2. Carr, H., Duke, D.: Joint contour nets. to appear in IEEE Transactions on Visualization and Computer Graphics (2013)

    Google Scholar 

  3. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24, 75–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Duke, D., Carr, H., Knoll, A., Schunck, N., Namh, A., Staszczak, A.: Visualizing nuclear scission through a multifield extension of topological analysis. IEEE Trans. Vis. Comput. Graph. 18(12), 2033–2040 (2012)

    Article  Google Scholar 

  5. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. Foundations of computational mathematics: Minneapolis, 2002, London Mathematical Society Lecture Note Series, vol. 312, pp. 37–57, Cambridge Univ. Press, Cambridge (2004)

    Google Scholar 

  6. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. Proceedings of the twenty-fourth annual symposium on computational geometry, pp. 242–250 (2008)

    Google Scholar 

  7. Fuchs, R., Hauser, H.: Visualization of multi-variate scientific data. Comput. Graph. Forum 28(6), 1670–1690 (2009)

    Article  Google Scholar 

  8. Fujishiro, I., Otsuka, R., Takahashi, S., Takeshima, Y.: T-Map: A topological approach to visual exploration of time-varying volume data. In: Labarta, J., Joe, K., Sato, T. (eds.) High-Performance Computing. Lecture Notes in Computer Science, vol. 4759, pp. 176–190, Springer, Berlin (2008)

    Google Scholar 

  9. Ge, X., Safa, I., Belkin, M., Wang, Y.: Data skeletonization via Reeb graphs. Twenty-Fifth Annual Conference on Neural Information Processing Systems, pp. 837–845 (2011)

    Google Scholar 

  10. Golubitsky, M., Guillemin, V.: Stable mappings and their singularities. Graduate Texts in Mathematics, vol. 14, Springer (1973)

    Google Scholar 

  11. Ikegami, K., Saeki, O.: Cobordism of Morse maps and its application to map germs. Math. Proc. Camb. Phil. Soc. 147, 235–254 (2009)

    Google Scholar 

  12. Lehmann, D.J., Theisel, H.: Discontinuities in continuous scatterplots. IEEE Trans. Vis. Comput. Graph. 16(6), 1291–1300 (2010)

    Article  Google Scholar 

  13. Levine, H.: Classifying immersions into \(\mathbf{R}^4\) over stable maps of \(3\)-manifolds into \(\mathbf{R}^2\). Lecture Notes in Math, vol. 1157, Springer, Berlin (1985)

    Google Scholar 

  14. Martins, L.F., Nabarro, A.C.: Projections of hypersurfaces in \(\mathbf{R}^4\) with boundary to planes. Glasgow Math. J. 56(1), 149–167 (2014)

    Google Scholar 

  15. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: Simplicity and speed. ACM Trans. Graph. 26, No. 3, (2007), Article 58, 58.1–58.9

    Google Scholar 

  16. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique. C. R. Acad. Sci. Paris 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  17. Saeki, O.: Topology of singular fibers of differentiable maps. Lecture Notes in Math, vol. 1854, Springer (2004)

    Google Scholar 

  18. Saeki, O.: Cobordism of Morse functions on surfaces, universal complex of singular fibers, and their application to map germs. Algebr. Geom. Topol. 6, 539–572 (2006)

    Google Scholar 

  19. Saeki, O., Yamamoto, T.: Singular fibers of stable maps of 3-manifolds with boundary into surfaces and their applications. preprint (2014)

    Google Scholar 

  20. Shibata, N.: On non-singular stable maps of \(3\)-manifolds with boundary into the plane. Hiroshima Math. J. 30, 415–435 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its application to transfer function design. Graph. Models 66, 24–49 (2004)

    Article  MATH  Google Scholar 

  22. Takeshima, Y., Takahashi, S., Fujishiro, I., Nielson, G.M.: Introducing topological attributes for objective-based visualization of simulated datasets. In: Proceedings of the Volume Graphics 2005, pp. 137–145 (2005)

    Google Scholar 

  23. Weber, G., Dillard, S., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330–341 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The “Hurricane Isabel” data set was produced by the Weather Research and Forecast (WRF) model, courtesy of NCAR and the U.S. National Science Foundation (NSF). This research has been partially supported by JSPS KAKENHI Grant Number 25540041, and EPSRC EP/J013072/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Saeki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Saeki, O. et al. (2014). Visualizing Multivariate Data Using Singularity Theory. In: Wakayama, M., et al. The Impact of Applications on Mathematics. Mathematics for Industry, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54907-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54907-9_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54906-2

  • Online ISBN: 978-4-431-54907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics