Skip to main content

Modelling Collective Cytoskeletal Transport and Intracellular Traffic

  • Conference paper
  • First Online:
The Impact of Applications on Mathematics

Part of the book series: Mathematics for Industry ((MFI,volume 1))

  • 983 Accesses

Abstract

Biological cells require active fluxes of matter to maintain their internal organization and perform multiple tasks to live. In particular they rely on cytoskeletal transport driven by motor proteins, ATP-fueled molecular engines, for delivering vesicles and biochemically active cargoes inside the cytoplasm. Experimental progress allows nowadays quantitative studies describing intracellular transport phenomena down to the nanometric scale of single molecules. Theoretical approaches face the challenge of modelling the multiscale, out-of-equilibrium and non-linear properties of cytoskeletal transport: from the mechanochemical complexity of a single molecular motor up to the collective transport on cellular scales. We will present some of our recent progress in building a generic modelling scheme for cytoskeletal transport based on lattice gas models called “exclusion processes”. Interesting new properties arise from the emergence of density inhomogeneities of particles along the network of one dimensional lattices. Moreover, understanding these processes on networks can provide important hints for other fundamental and applied problems such as vehicular, pedestrian and data traffic, or ultimately for technological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The typical energy scale is \(1~k_BT \sim 4\times 10^{-21}~\mathrm{J}\) with \(k_B \simeq 1,38 \times 10^{-23}~\mathrm{J}/\mathrm{K}\) is the Boltzmann constant and \(T \simeq 300~\mathrm{K}\) is the absolute temperature in Kelvin units.

  2. 2.

    Note that in TASEP-LK such a condition is relaxed since particles can enter and leave the system at any site due to the binding/unbinding Langmuir process.

  3. 3.

    In the effective rates \(\alpha _{v,eff}\) and \(\beta _{v,eff}\) we keep the explicit dependence on the jump rate \(p\).

  4. 4.

    A detailed analysis, for large values of the connectivity can be found in the supplementary material of ref. [11].

  5. 5.

    The current distribution \(W(j_s)\) remains monomodal (see the inset in Fig. 5) since the current is globally invariant under the particle-hole symmetry.

References

  1. Alberts, B., Johnson, A., Walter, P., Lewis, J., Raff, M., Roberts, K.: Molecular Biology of the Cell, 15th edn. Garland, New York (2008)

    Google Scholar 

  2. Aridor, M., Hannan, L.A.: Traffic jams II: an update of diseases of intracellular transport. Traffic 3(11), 781–790 (2002)

    Article  Google Scholar 

  3. Hirokawa, N., Takemura, R.: Molecular motors in neuronal development, intracellular transport and diseases. Curr. Opin. Neurobiol. 14(5), 564–573 (2004)

    Article  Google Scholar 

  4. Gunawardena, S., Goldstein, L.S.: Cargo—carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J. Neurobiol. 58(2), 258–271 (2004)

    Article  Google Scholar 

  5. Howard, Mechanics of motor proteins and the cytoskeleton, J. Sinauer Associates, Sunderland, MA, (2001)

    Google Scholar 

  6. Ross, J.L., Shuman, H., Holzbaur, E.L., Goldman, Y.E.: Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys. J. 94(8), 3115–3125 (2008)

    Article  Google Scholar 

  7. Cai, D., McEwen, D.P., Martens, J.R., Meyhofer, E., Verhey, K.J.: Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7(10), e1000216 (2009)

    Article  Google Scholar 

  8. Pierobon, P., Achouri, S., Courty, S., Dunn, A.R., Spudich, J.A., Dahan, M., Cappello, G.: Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96(10), 4268–4275 (2009)

    Article  Google Scholar 

  9. Leduc, C., Padberg-Gehle, K., Varga, V., Helbing, D., Diez, S., Howard, J.: Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc. Nat. Acad. Sci. 109(16), 6100–6105 (2012)

    Article  Google Scholar 

  10. Bálint, S., Vilanova, I.V., lvarez, A.S., Lakadamyali, M.: Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Pro. Nat. Acad. Sci. 110(9), 3375–3380 (2013)

    Article  Google Scholar 

  11. Neri, I., Kern, N., Parmeggiani, A.: Totally asymmetric simple exclusion process on networks. Phys. Rev. Lett. 107(6), 068702 (2011)

    Article  Google Scholar 

  12. Neri, I., Kern, N., Parmeggiani, A.: Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport. Phys. Rev. Lett. 110(9), 098102 (2013)

    Article  Google Scholar 

  13. Neri, I., Kern, N., Parmeggiani, A.: Exclusion processes on networks as models for cytoskeletal transport. N. J. Phys. 15(8), 085005 (2013)

    Article  Google Scholar 

  14. Tada, H., Higuchi, H., Wanatabe, T.M., Ohuchi, N.: In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 67(3), 1138–1144 (2007)

    Article  Google Scholar 

  15. Farina, F., Pierobon, P., Delevoye, C., Monnet, J., Dingli, F., Loew, D., Quanz, M., Dutreix, M., Cappello, G.: Kinesin KIFC1 actively transports bare double-stranded DNA. Nucl. Acids Res. 41(9), 4926–4937 (2013)

    Article  Google Scholar 

  16. Hamburg, M.A., Collins, F.S.: The path to personalized medicine. N. Eng. J. Med. 363(4), 301–304 (2010)

    Article  Google Scholar 

  17. Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep Prog. Phys. 74(11), 116601 (2011)

    Article  MathSciNet  Google Scholar 

  18. Aghababaie, Y., Menon, G.I., Plischke, M.: Universal properties of interacting Brownian motors. Phys. Rev. E. 59(3), 2578 (1999)

    Article  Google Scholar 

  19. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. Phase Transitions Crit. Phenom. 19, 1–251 (2001)

    Article  Google Scholar 

  20. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A Math. Theor. 40(46), R333 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mallick, K.: Some exact results for the exclusion process. J. Stat. Mech. Theory Exp. 2011(01), P01024 (2011)

    Article  MathSciNet  Google Scholar 

  22. Mottishaw, P., Waclaw, B., Evans, M.R.: An exclusion process on a tree with constant aggregate hopping rate. J. Phys. A Math. Theor. 46(40), 405003 (2013)

    Article  MathSciNet  Google Scholar 

  23. Liggett, T.M.: Interacting Particle Systems, 276th edn. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  24. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 2007(07), P07023 (2007)

    Article  MathSciNet  Google Scholar 

  25. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. Theory Exp. 2007(07), P07014 (2007)

    Article  Google Scholar 

  26. Kirchhoff, G.: Ueber die Auflösung der gleichungen, auf welche man bei der untersuchung der linearen Vertheilung galvanischer Ströme geführt wird Ann. Phys. Chem. 148, 497–508 (1847)

    Google Scholar 

  27. Appert, C., Santen, L.: Modélisation du trafic routier par des automates cellulaires. Actes INRETS, 100, (2002)

    Google Scholar 

  28. Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E. 67(5), 056122 (2003)

    Article  Google Scholar 

  29. Chowdhury, D., Schadschneider, A., Nishinari, K.: Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev. 2(4), 318–352 (2005)

    Article  Google Scholar 

  30. Lipowsky, R., Chai, Y., Klumpp, S., Liepelt, S., Müller, M.J.: Molecular motor traffic: From biological nanomachines to macroscopic transport. Phys. A Stat. Mech. Appl. 372(1), 34–51 (2006)

    Article  Google Scholar 

  31. Moussaid, M., Guillot, E.G., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettr, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLoS computational biology 8(3), (2012)

    Google Scholar 

  32. Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D.: Modelling of self-driven particles: foraging ants and pedestrians. Phys. A Stat. Mech. Appl. 372(1), 132–141 (2006)

    Article  Google Scholar 

  33. Karzig, T., von Oppen, F.: Signatures of critical full counting statistics in a quantum-dot chain. Phys. Rev. B 81(4), 045317 (2010)

    Article  Google Scholar 

  34. Reichenbach, T., Franosch, T., Frey, E.: Exclusion processes with internal states. Phys. Rev. Lett. 97(5), 050603 (2006)

    Article  MathSciNet  Google Scholar 

  35. Chou, T.: An interacting spinflip model for one-dimensional proton conduction. J. Phy. A Math. Gen. 35(21), 4515 (2002)

    Article  Google Scholar 

  36. Karcher, R.L., Deacon, S.W., Gelfand, V.I.: Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12(1), 21–27 (2002)

    Article  Google Scholar 

  37. Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69(4), 1269 (1997)

    Article  Google Scholar 

  38. Parmeggiani, A., Schmidt, C. F.: Micromechanics of molecular motors: experiments and theory. In: Function and Regulation of Cellular Systems (pp. 151–176). Birkhäuser Basel (2004)

    Google Scholar 

  39. Lipowsky, R., Klumpp, S.: Life is motion: multiscale motility of molecular motors. Phys. A Stat. Mech. Appl. 352(1), 53–112 (2005)

    Article  Google Scholar 

  40. Parmeggiani, A.: Non-equilibrium collective transport on molecular highways. In: Traffic and granular flow 07 (pp. 667–677). Springer, Berlin Heidelberg (2009)

    Google Scholar 

  41. Gross, S.P.: Hither and yon: a review of bi-directional microtubule-based transport. Phys. Biol. 1(2), R1 (2004)

    Article  Google Scholar 

  42. Nagel, K., Herrmann, H.J.: Deterministic models for traffic jams. Phys. A Stat. Mech. Appl. 199(2), 254–269 (1993)

    Article  MATH  Google Scholar 

  43. Schreckenberg, M., Schadschneider, A., Nagel, K., Ito, N.: Discrete stochastic models for traffic flow. Phys. Rev. E 51(4), 2939 (1995)

    Article  Google Scholar 

  44. MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)

    Article  Google Scholar 

  45. MacDonald, C.T., Gibbs, J.H.: Concerning the kinetics of polypeptide synthesis on polyribosomes. Biopolymers 7(5), 707–725 (1969)

    Article  Google Scholar 

  46. Ciandrini, L., Stansfield, I., Romano, M.C.: Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation. PLoS Comput. Biol. 9(1), e1002866 (2013)

    Article  Google Scholar 

  47. Parmeggiani, A., Franosch, T., Frey, E.: Phase coexistence in driven one-dimensional transport. Phys. Rev. Lett. 90(8), 086601 (2003)

    Article  Google Scholar 

  48. Parmeggiani, A., Franosch, T., Frey, E.: Totally asymmetric simple exclusion process with Langmuir kinetics. Phys. Rev. E 70(4), 046101 (2004)

    Article  MathSciNet  Google Scholar 

  49. Popkov, V., Rkos, A., Willmann, R.D., Kolomeisky, A.B., Schütz, G.M.: Localization of shocks in driven diffusive systems without particle number conservation. Phys. Rev. E 67(6), 066117 (2003)

    Article  Google Scholar 

  50. Burgers, J.: Kon. Nde. Akad. Wet. Verh. (Eerste Sectie) 17, 1 (1939)

    MathSciNet  Google Scholar 

  51. Burgers, J. M.: Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion (pp. 281–334). Springer, Netherlands (1995)

    Google Scholar 

  52. Shaw, L.B., Zia, R.K.P., Lee, K.H.: Totally asymmetric exclusion process with extended objects: a model for protein synthesis. Phys. Rev. E 68(2), 021910 (2003)

    Article  Google Scholar 

  53. Pierobon, P., Frey, E., Franosch, T.: Driven lattice gas of dimers coupled to a bulk reservoir. Phys. Rev. E 74(3), 031920 (2006)

    Article  Google Scholar 

  54. Derrida, B., Domany, E., Mukamel, D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69(3–4), 667–687 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  55. Schütz, G., Domany, E.: Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72(1–2), 277–296 (1993)

    Article  MATH  Google Scholar 

  56. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26(7), 1493 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  57. Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A Math. Gen. 31(33), 6911 (1998)

    Article  MATH  Google Scholar 

  58. Santen, L., Appert, C.: The asymmetric exclusion process revisited: fluctuations and dynamics in the domain wall picture. J. Stat. Phys. 106(1–2), 187–199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  59. Klumpp, S., Lipowsky, R.: Traffic of molecular motors through tube-like compartments. J. Stat. Phys. 113(1–2), 233–268 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  60. Krug, J.: Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67(14), 1882 (1991)

    Article  MathSciNet  Google Scholar 

  61. Pierobon, P., Parmeggiani, A., von Oppen, F., Frey, E.: Dynamic correlation functions and Boltzmann-Langevin approach for driven one-dimensional lattice gas. Phys. Rev. E. 72(3), 036123 (2005)

    Google Scholar 

  62. Luby-Phelps, K.: Physical properties of cytoplasm. Curr. Opin. Cell Biol. 6(1), 3–9 (1994)

    Article  Google Scholar 

  63. Brankov, J., Pesheva, N., Bunzarova, N.: Totally asymmetric exclusion process on chains with a double-chain section in the middle: computer simulations and a simple theory. Phys. Rev. E 69(6), 066128 (2004)

    Article  Google Scholar 

  64. Embley, B., Parmeggiani, A., Kern, N.: Understanding totally asymmetric simple-exclusion-process transport on networks: generic analysis via effective rates and explicit vertices. Phys. Rev. E 80(4), 041128 (2009)

    Article  Google Scholar 

  65. Varga, V., Leduc, C., Bormuth, V., Diez, S., Howard, J.: Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138(6), 1174–1183 (2009)

    Article  Google Scholar 

  66. Raguin, A., Parmeggiani, A., Kern, N.: Role of network junctions for the totally asymmetric simple exclusion process. Phys. Rev. E 88(4), 042104 (2013)

    Article  Google Scholar 

  67. Embley, B., Parmeggiani, A., Kern, N.: HEX-TASEP: dynamics of pinned domains for TASEP transport on a periodic lattice of hexagonal topology. J. Phys. Condens. Matter 20(29), 295213 (2008)

    Article  Google Scholar 

  68. Nishinari, K., Okada, Y., Schadschneider, A., Chowdhury, D.: Intracellular transport of single-headed molecular motors KIF1A. Phys. Rev. Lett. 95(11), 118101 (2005)

    Article  Google Scholar 

  69. Ciandrini, L., Stansfield, I.C.R.M., Romano, M.C.: Role of the particles stepping cycle in an asymmetric exclusion process: a model of mRNA translation. Phys. Rev. E 81(5), 051904 (2010)

    Article  Google Scholar 

  70. Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)

    Article  Google Scholar 

  71. Greulich, P., Santen, L.: Active transport and cluster formation on 2D networks. Europ. Phys. J. E 32(2), 191–208 (2010)

    Article  Google Scholar 

  72. Ezaki, T., Nishinari, K.: A balance network for the asymmetric simple exclusion process. J. Stat. Mech. Theory Exp. 2012(11), P11002 (2012)

    Article  Google Scholar 

  73. Kruse, K., Sekimoto, K.: Growth of fingerlike protrusions driven by molecular motors. Phys. Rev. E 66(3), 031904 (2002)

    Article  Google Scholar 

  74. Klein, G.A., Kruse, K., Cuniberti, G., Jülicher, F.: Filament depolymerization by motor molecules. Phys. Rev. Lett. 94(10), 108102 (2005)

    Article  Google Scholar 

  75. Reese, L., Melbinger, A., Frey, E.: Crowding of molecular motors determines microtubule depolymerization. Biophys. J. 101(9), 2190–2200 (2011)

    Article  Google Scholar 

  76. Johann, D., Erlenkmper, C., Kruse, K.: Length regulation of active biopolymers by molecular motors. Phys. Rev. Lett. 108(25), 258103 (2012)

    Article  Google Scholar 

  77. Melbinger, A., Reese, L., Frey, E.: Microtubule length regulation by molecular motors. Phys. Rev. Lett. 108(25), 258104 (2012)

    Article  Google Scholar 

  78. Klumpp, S., Nieuwenhuizen, T.M., Lipowsky, R.: Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments. Biophys. J. 88(5), 3118–3132 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the European Molecular Biology Organization (EMBO), the Centre National de la Recherche Scientifique (CNRS), the National Agency for Research (ANR), the Program of Laboratory of Excellence (LabEx) NUMEV and the Scientific Council of the University of Montpellier 2 for the financial support obtained during these years. We acknowledge the interesting discussions we had on these topics in these years with A. Abrieu, C. Appert, P. Arndt, B. Bassetti, P. Benetatos, M. Bornens, C. Braun-Breton, S. Camalet, G. Cappello, L. Ciandrini, M. Cosentino-Lagomarsino, N. Crampe, O. Dauloudet, S. Diez, J. Dorignac, A. Dunn, B. Embley, M. Evans, T. Franosch F. Geniet, J. Howard, K. Kroy, J.F. Joanny, F. Jülicher, K. Kruse, C. Leduc, M. Lefranc, V. Lorman, P. Malgaretti, K. Mallick, P. Montcourrier, B. Mulder, I. Pagonabarraga, A. Parmeggiani, P. Pierobon, J. Prost, O. Radulescu, A. Raguin, C.M. Romano, E. Sackmann, J. Santos, K. Sasaki, C.F. Schmidt, G.M. Schütz, K. Sekimoto, J. Spudich, F. Turci, C. Vanderzande and M. Wakayama. N.K. and A.P. would like to thank B. Embley for his contribution in the study of TASEP on small networks. In particular, A.P. specially thanks E. Frey for the opportunity to work on exclusion processes for motor protein transport and for the many important and insightful discussions they had on the topic, together with T. Franosch, some years ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Parmeggiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Parmeggiani, A., Neri, I., Kern, N. (2014). Modelling Collective Cytoskeletal Transport and Intracellular Traffic. In: Wakayama, M., et al. The Impact of Applications on Mathematics. Mathematics for Industry, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54907-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54907-9_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54906-2

  • Online ISBN: 978-4-431-54907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics