Skip to main content

Introduction of Nano/Micro Science and Technology in Biorheology

  • Chapter
Nano/Micro Science and Technology in Biorheology

Abstract

Rheology is the science of the deformation and flow responses of viscoelastic materials resulting from stimulation, mainly by inducing mechanical stress. The stimulus-response relationship or response function is a characteristic of materials, and thus rheology provides general theoretical and experimental approaches that can be applied to the study of an object. This enables us to understand the macroscopic elasticity, viscosity, and viscoelasticity of materials on a molecular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  2. Domb C, Green M, Lebowitz JL (1991) Phase transitions and critical phenomena. Academic, London/New York

    Google Scholar 

  3. Schlag EW (2012) Time of flight mass spectroscopy and its application. Elsevier, Amsterdam

    Google Scholar 

  4. James TL (ed) (2005) Nuclear magnetic resonance of biological macromolecules, Part C, vol 394, Methods in enzymology. Elsevier Academic Press, New York

    Google Scholar 

  5. Michel M, Modo J, Bulte JWM (eds) (2007) Molecular and cellular MR imaging. CRC Press, Boca Raton

    Google Scholar 

  6. Hannaford P (2005) Femtosecond laser spectroscopy. Springer, New York

    Book  Google Scholar 

  7. Flora L, Nathan A (2010) CCD image sensors in deep-ultraviolet: degradation behavior and damage mechanisms (microtechnology and MEMS). Springer, Berlin/New York

    Google Scholar 

  8. Bhushan B, Fuchs H, Tomitori M (2008) Scanning probe microscopy techniques. Springer, Berlin/New York

    Google Scholar 

  9. MacKintosh FC, et al. (1999) Microrheology. Curr Opin Colloid Interface Sci 4:300; Capsi A, et al. (2000) Enhanced diffusion in active intracellular transport. Phys Rev Lett 85:5655

    Google Scholar 

  10. Wilson LG, Poon WCK (2011) Small-world rheology: an introduction to probe-based active microrheology. PCCP 22:10617; Lee H, Ferrer JM, Nakamura F, Lang MJ, Kamm RD (2010) Passive and active microrheology for cross-linked F-actin networks in vitro. Acta Biomater 6(4):1207–1218

    Google Scholar 

  11. Haga H, et al. (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253; Bhanu P, Heinrich J, Hoerber JK (eds) Atomic force microscopy. Academic Press, San Diego

    Google Scholar 

  12. Matthew MJ, Fordyce PM, Engh AM, Neuman KC, Block SM (2004) Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1:133–139

    Article  Google Scholar 

  13. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  PubMed  Google Scholar 

  15. Masuda A, Ushida K, Okamoto T (2005) Direct observation of spatiotemporal dependence of anomalous diffusion in inhomogeneous fluid by sample-volume-controlled fluorescence correlation spectroscopy. Phys Rev E 72:060101R

    Article  Google Scholar 

  16. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1990) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854

    Article  Google Scholar 

  17. Oka S (1981) Cardiovascular hemorheology. Cambridge University Press, Cambridge

    Google Scholar 

  18. Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin/New York

    Book  Google Scholar 

  19. Callaghan PT (2006) Rheo-NMR and velocity imaging. Curr Opin Colloid Interface Sci 11:13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Dobashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kita, R., Dobashi, T. (2015). Introduction of Nano/Micro Science and Technology in Biorheology. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_1

Download citation

Publish with us

Policies and ethics