Skip to main content

Synaptic Contacts Between Hair Cells and Primary Neurons

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 1009 Accesses

Abstract

Synaptic contacts between hair cells and primary neurons are included in important architectures for inner ear functions. Inner hair cells are innervated by afferent nerve fibers with characteristic morphology. Each type of inner hair cells has synaptic ribbons that are electron-dense structures at the presynaptic region. Synaptic ribbons play a crucial role in glutamate release to the afferent nerve endings. This chapter reviews basic anatomy of synaptic contacts between hair cells and primary neurons and discusses on the importance of ribbon synapses in inner hair cells of the cochlea as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Merchan-Perez A, Liberman MC. Ultrastructural differences among afferent synapses on cochlear hair cells: correlations with spontaneous discharge rate. J Comp Neurol. 1996;371(2):208–21.

    Article  CAS  PubMed  Google Scholar 

  2. Safieddine S, El-Amraoui A, Petit C. The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci. 2012;35:509–28.

    Article  CAS  PubMed  Google Scholar 

  3. Liberman MC, Dodds LW, Pierce S. Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol. 1990;301(3):443–60.

    Article  CAS  PubMed  Google Scholar 

  4. Nadol JB. Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. II. outer hair cells. Laryngoscope. 1983;93(6):780–91.

    Article  PubMed  Google Scholar 

  5. Liberman MC, O’Grady DF, Dodds LW, McGee J, Walsh EJ. Afferent innervation of outer and inner hair cells is normal in neonatally de-efferented cats. J Comp Neurol. 2000;423(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  6. Choquet D, Triller A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci. 2003;4(4):251–65.

    Article  CAS  PubMed  Google Scholar 

  7. Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies GC, et al. The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci. 2006;26(29):7659–64.

    Article  CAS  PubMed  Google Scholar 

  8. Lysakowski A, Goldberg JM. A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol. 1997;389(3):419–43.

    Article  CAS  PubMed  Google Scholar 

  9. Matsubara A, Takumi Y, Nakagawa T, Usami S, Shinkawa H, Ottersen OP. Immunoelectron microscopy of AMPA receptor subunits reveals three types of putative glutamatergic synapse in the rat vestibular end organs. Brain Res. 1999;819(1–2):58–64.

    Article  CAS  PubMed  Google Scholar 

  10. Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science. 1993;259(5101):1619–22.

    Article  CAS  PubMed  Google Scholar 

  11. Rubel EW, Dew LA, Roberson DW. Mammalian vestibular hair cell regeneration. Science. 1995;267(5198):701–7.

    Article  CAS  PubMed  Google Scholar 

  12. Staecker H, Praetorius M, Baker K, Brough DE. Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol Neurotol. 2007;28(2):223–31.

    Article  PubMed  Google Scholar 

  13. Giraudet F, Avan P. Auditory neuropathies: understanding their pathogenesis to illuminate intervention strategies. Curr Opin Neurol. 2012;25(1):50–6.

    Article  PubMed  Google Scholar 

  14. Puel JL, Pujol R, Tribillac F, Ladrech S, Eybalin M. Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity. J Comp Neurol. 1994;341(2):241–56.

    Article  CAS  PubMed  Google Scholar 

  15. Pujol R, Puel JL. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci. 1999;884:249–54.

    Article  CAS  PubMed  Google Scholar 

  16. Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29(45):14077–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lin HW, Furman AC, Kujawa SG, Liberman MC. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol. 2011;12(5):605–16.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang Q, Green SH. Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. J Neurosci. 2011;31(21):7938–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tong M, Brugeaud A, Edge AS. Regenerated synapses between postnatal hair cells and auditory neurons. J Assoc Res Otolaryngol. 2013;14(3):321–9.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hamaguchi K, Yamamoto N, Nakagawa T, Furuyashiki T, Narumiya S, Ito J. Role of PGE-type receptor 4 in auditory function and noise-induced hearing loss in mice. Neuropharmacology. 2012;62(4):1841–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013;33(34):13686–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Roux I, Hosie S, Johnson SL, Bahloul A, Cayet N, Nouaille S, et al. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum Mol Genet. 2009;18(23):4615–28.

    Article  CAS  PubMed  Google Scholar 

  23. Khimich D, Nouvian R, Pujol R, Tom Dieck S, Egner A, Gundelfinger ED, et al. Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature. 2005;434(7035):889–94.

    Article  CAS  PubMed  Google Scholar 

  24. Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet. 2008;83(2):278–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell. 2006;127(2):277–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Nakagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nakagawa, T. (2014). Synaptic Contacts Between Hair Cells and Primary Neurons. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics