Skip to main content

Cochlear Lateral Wall

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 1161 Accesses

Abstract

The mammalian cochlea is the primary auditory sense organ which converts mechanical sound energy to electrical signals conducted by the nervous systems. The cochlear lateral wall, located laterally to the cochlear sensory epithelium in the cochlear duct, contributes auditory function and maintenance of homeostasis in the cochlear fluid through generation of endocochlear potential and K+ recycling from perilymph to endolymph. Although our understanding of the basic mechanisms underlying auditory processing in the cochlea has increased significantly in the last two decades, the structure and function of the cochlear lateral wall seems to have been less appreciated during those periods. This chapter will focus on the cochlear lateral wall in terms of potential as a target for regeneration in particular. First, we will discuss the anatomy of the lateral wall reviewing the recent advance in this field. Next, we will discuss the function of the lateral wall, which is basically demonstrated through the advance of physiological studies, and then we will move on to the molecular basis of the cochlear lateral wall. Finally, we will discuss pathology of the lateral wall and possible strategies for hearing disorder caused by dysfunction of the lateral wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hibino H, Nin F, Tsuzuki C, Kurachi Y. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch. 2010;459(4):521–33. doi:10.1007/s00424-009-0754-z.

    Article  CAS  PubMed  Google Scholar 

  2. Schacht J, Hawkins JE. Sketches of otohistory part 4: a cell by any other name: cochlear eponyms. Audiol Neurootol. 2004;9(6):317–27. doi:10.1159/000081311.

    Article  PubMed  Google Scholar 

  3. Nachlas NE, Lurie MH. The stria vascularis: review and observations. Laryngoscope. 1951;61(10):989–1003. doi:10.1288/00005537-195110000-00002.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson RL, Spoendlin HH. Structural evidence of secretion in the stria vascularis. Ann Otol Rhinol Laryngol. 1966;75(1):127–38.

    CAS  PubMed  Google Scholar 

  5. Ahmad S, Chen S, Sun J, Lin X. Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun. 2003;307(2):362–8.

    Article  CAS  PubMed  Google Scholar 

  6. Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals. J Comp Neurol. 2003;467(2):207–31. doi:10.1002/cne.10916.

    Article  PubMed  Google Scholar 

  7. Jagger DJ, Forge A. Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci. 2006;26(4):1260–8. doi:10.1523/JNEUROSCI.4278-05.2006.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao HB, Yu N. Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol. 2006;499(3):506–18. doi:10.1002/cne.21113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lopez-Bigas N, Olive M, Rabionet R, Ben-David O, Martinez-Matos JA, Bravo O, et al. Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet. 2001;10(9):947–52.

    Article  CAS  PubMed  Google Scholar 

  10. Eiberger J, Kibschull M, Strenzke N, Schober A, Bussow H, Wessig C, et al. Expression pattern and functional characterization of connexin29 in transgenic mice. Glia. 2006;53(6):601–11. doi:10.1002/glia.20315.

    Article  PubMed  Google Scholar 

  11. Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, et al. Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci. 2006;26(7):1991–9. doi:10.1523/JNEUROSCI.5055-05.2006.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C. Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res. 2004;316(1):15–22. doi:10.1007/s00441-004-0861-2.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki T, Takamatsu T, Oyamada M. Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26. J Histochem Cytochem. 2003;51(7):903–12.

    Article  CAS  PubMed  Google Scholar 

  14. Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res. 1991;56(1–2):53–64.

    Article  CAS  PubMed  Google Scholar 

  15. Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res. 1996;100(1–2):80–100.

    Article  CAS  PubMed  Google Scholar 

  16. Hilding DA, Ginzberg RD. Pigmentation of the stria vascularis. The contribution of neural crest melanocytes. Acta Otolaryngol. 1977;84(1–2):24–37.

    Article  CAS  PubMed  Google Scholar 

  17. Steel KP, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 1989;107(3):453–63.

    CAS  PubMed  Google Scholar 

  18. Jagger DJ, Forge A. The enigmatic root cell – emerging roles contributing to fluid homeostasis within the cochlear outer sulcus. Hear Res. 2013;303:1–11. doi:10.1016/j.heares.2012.10.010.

    Article  PubMed  Google Scholar 

  19. Jagger DJ, Nevill G, Forge A. The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. J Assoc Res Otolaryngol. 2010. doi:10.1007/s10162-010-0218-3.

    PubMed Central  PubMed  Google Scholar 

  20. Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, et al. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A. 2012;109(26):10388–93. doi:10.1073/pnas.1205210109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lang H, Ebihara Y, Schmiedt RA, Minamiguchi H, Zhou D, Smythe N, et al. Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol. 2006;496(2):187–201. doi:10.1002/cne.20929.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Okano T, Nakagawa T, Kita T, Kada S, Yoshimoto M, Nakahata T, et al. Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J Neurosci Res. 2008;86(8):1758–67. doi:10.1002/jnr.21625.

    Article  CAS  PubMed  Google Scholar 

  23. Sato E, Shick HE, Ransohoff RM, Hirose K. Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. J Assoc Res Otolaryngol. 2010;11(2):223–34. doi:10.1007/s10162-009-0198-3.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Warchol ME, Schwendener RA, Hirose K. Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea. PLoS One. 2012;7(12):e51574. doi:10.1371/journal.pone.0051574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hirose K, Discolo CM, Keasler JR, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol. 2005;489(2):180–94. doi:10.1002/cne.20619.

    Article  PubMed  Google Scholar 

  26. Zidanic M, Brownell WE. Fine structure of the intracochlear potential field. I. The silent current. Biophys J. 1990;57(6):1253–68. doi:10.1016/S0006-3495(90)82644-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Von Bekesy G. Resting potentials inside the cochlear partition of the guinea pig. Nature. 1952;169(4293):241–2.

    Article  Google Scholar 

  28. Davis H, Deatherage BH, Eldredge DH, Smith CA. Summating potentials of the cochlea. Am J Physiol. 1958;195(2):251–61.

    CAS  PubMed  Google Scholar 

  29. Offner FF, Dallos P, Cheatham MA. Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis. Hear Res. 1987;29(2–3):117–24.

    Article  CAS  PubMed  Google Scholar 

  30. Sellick PM, Johnstone BM. Production and role of inner ear fluid. Prog Neurobiol. 1975;5(4):337–62.

    Article  CAS  PubMed  Google Scholar 

  31. Salt AN, Melichar I, Thalmann R. Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope. 1987;97(8 Pt 1):984–91.

    CAS  PubMed  Google Scholar 

  32. Takeuchi S, Ando M, Kakigi A. Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis. Biophys J. 2000;79(5):2572–82. doi:10.1016/S0006-3495(00)76497-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wangemann P. K+ cycling and the endocochlear potential. Hear Res. 2002;165(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kusakari J, Ise I, Comegys TH, Thalmann I, Thalmann R. Effect of ethacrynic acid, furosemide, and ouabain upon the endolymphatic potential and upon high energy phosphates of the stria vascularis. Laryngoscope. 1978;88(1 Pt 1):12–37.

    CAS  PubMed  Google Scholar 

  35. Wada J, Paloheimo S, Thalmann I, Bohne BA, Thalmann R. Maintenance of cochlear function with artificial oxygen carriers. Laryngoscope. 1979;89(9 Pt 1):1457–73.

    Article  CAS  PubMed  Google Scholar 

  36. Ando M, Takeuchi S. Immunological identification of an inward rectifier K+ channel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats. Cell Tissue Res. 1999;298(1):179–83.

    Article  CAS  PubMed  Google Scholar 

  37. Hibino H, Horio Y, Inanobe A, Doi K, Ito M, Yamada M, et al. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. J Neurosci. 1997;17(12):4711–21.

    CAS  PubMed  Google Scholar 

  38. Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, et al. Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci. 2004;24(32):7051–62. doi:10.1523/JNEUROSCI.1640-04.2004.

    Article  CAS  PubMed  Google Scholar 

  39. Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, et al. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci. 2004;117(Pt 21):5087–96. doi:10.1242/jcs.01393.

    Article  CAS  PubMed  Google Scholar 

  40. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, et al. Barttin is a Cl− channel beta-subunit crucial for renal Cl− reabsorption and inner ear K+ secretion. Nature. 2001;414(6863):558–61. doi:10.1038/35107099.

    Article  CAS  PubMed  Google Scholar 

  41. Sunose H, Ikeda K, Suzuki M, Takasaka T. Voltage-activated K channel in luminal membrane of marginal cells of stria vascularis dissected from guinea pig. Hear Res. 1994;80(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  42. Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, et al. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res. 2004;187(1–2):25–34.

    Article  CAS  PubMed  Google Scholar 

  43. Zelante L, Gasparini P, Estivill X, Melchionda S, D'Agruma L, Govea N, et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet. 1997;6(9):1605–9.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol. 2002;12(13):1106–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, et al. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet. 2003;12(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  46. Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green ED, et al. A mutation in PDS causes non-syndromic recessive deafness. Nat Genet. 1998;18(3):215–7. doi:10.1038/ng0398-215.

    Article  CAS  PubMed  Google Scholar 

  47. Everett LA, Morsli H, Wu DK, Green ED. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci U S A. 1999;96(17):9727–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet. 2001;10(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  49. Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell. 2001;104(1):165–72.

    Article  CAS  PubMed  Google Scholar 

  50. Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet. 2003;12(16):2049–61.

    Article  CAS  PubMed  Google Scholar 

  51. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet. 1997;15(2):186–9. doi:10.1038/ng0297-186.

    Article  CAS  PubMed  Google Scholar 

  52. Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, et al. KCNE1 mutations cause Jervell and Lange–Nielsen syndrome. Nat Genet. 1997;17(3):267–8. doi:10.1038/ng1197-267.

    Article  CAS  PubMed  Google Scholar 

  53. Tyson J, Tranebjaerg L, Bellman S, Wren C, Taylor JF, Bathen J, et al. IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange–Nielsen syndrome. Hum Mol Genet. 1997;6(12):2179–85.

    Article  CAS  PubMed  Google Scholar 

  54. Casimiro MC, Knollmann BC, Ebert SN, Vary Jr JC, Greene AE, Franz MR, et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci U S A. 2001;98(5):2526–31. doi:10.1073/pnas.041398998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Vetter DE, Mann JR, Wangemann P, Liu J, McLaughlin KJ, Lesage F, et al. Inner ear defects induced by null mutation of the isk gene. Neuron. 1996;17(6):1251–64.

    Article  CAS  PubMed  Google Scholar 

  56. Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, et al. KCNQ4, a K + channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A. 2000;97(8):4333–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Marcus DC, Wu T, Wangemann P, Kofuji P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol. 2002;282(2):C403–7.

    Article  CAS  PubMed  Google Scholar 

  58. Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJ, et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med. 2004;2:30. doi:10.1186/1741-7015-2-30.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29(3):310–4. doi:10.1038/ng752.

    Article  CAS  PubMed  Google Scholar 

  60. Rickheit G, Maier H, Strenzke N, Andreescu CE, De Zeeuw CI, Muenscher A, et al. Endocochlear potential depends on Cl− channels: mechanism underlying deafness in Bartter syndrome IV. Embo J. 2008;27(21):2907–17. doi:10.1038/emboj.2008.203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y, et al. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science. 1999;285(5432):1408–11.

    Article  CAS  PubMed  Google Scholar 

  62. Phippard D, Lu L, Lee D, Saunders JC, Crenshaw 3rd EB. Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci. 1999;19(14):5980–9.

    CAS  PubMed  Google Scholar 

  63. Schuknecht HF, Gacek MR. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol. 1993;102(1 Pt 2):1–16.

    CAS  PubMed  Google Scholar 

  64. Schuknecht HF, Watanuki K, Takahashi T, Belal Jr AA, Kimura RS, Jones DD, et al. Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope. 1974;84(10):1777–821. doi:10.1288/00005537-197410000-00012.

    Article  CAS  PubMed  Google Scholar 

  65. Hequembourg S, Liberman MC. Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol. 2001;2(2):118–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Ohlemiller KK, Rice ME, Lett JM, Gagnon PM. Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline. Hear Res. 2009;249(1–2):1–14. doi:10.1016/j.heares.2008.12.005.

    Article  CAS  PubMed  Google Scholar 

  67. Koga K, Hakuba N, Watanabe F, Shudou M, Nakagawa T, Gyo K. Transient cochlear ischemia causes delayed cell death in the organ of Corti: an experimental study in gerbils. J Comp Neurol. 2003;456(2):105–11. doi:10.1002/cne.10479.

    Article  PubMed  Google Scholar 

  68. Okamoto Y, Hoya N, Kamiya K, Fujii M, Ogawa K, Matsunaga T. Permanent threshold shift caused by acute cochlear mitochondrial dysfunction is primarily mediated by degeneration of the lateral wall of the cochlea. Audiol Neurootol. 2005;10(4):220–33. doi:10.1159/000084843.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Okano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Okano, T. (2014). Cochlear Lateral Wall. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics