Skip to main content

Cardiac Surgery: Overview

  • Chapter
  • First Online:
Robotic Surgery
  • 1761 Accesses

Abstract

The significant advantages of minimizing surgical trauma, such as reduced pain, shorter hospital stays, faster return to normal activities, and improved cosmesis, have resulted in the development of minimally invasive surgery (Modi P et al (2008) Eur J Cardiothorac Surg 34:943–952). Until recently, various difficulties associated with endoscopic approaches had stalled similar progress in the field of cardiac surgery. However, robotic technology overcame the difficulties associated with conventional endoscopic surgery and has made possible a new approach to minimally invasive cardiac surgery (MICS).

The application of robot-assisted coronary surgery ranges from internal mammary artery (IMA) harvesting with hand-sewn anastomoses to totally endoscopic coronary artery bypass grafting (TECAB) either on- or off-pump. The bilateral IMA can be harvested with the aid of a surgical robot and then multivessel bypass grafting can follow. Srivastava calls such robot-assisted minimally invasive direct coronary artery bypass grafting (MIDCAB) “ThoraCAB” (Srivastava S et al (2006) Ann Thorac Surg 81:800–806). Surgical robots can not only endoscopically harvest the IMA but they can also anastomose the coronary artery in TECAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Modi P, Hassan A, Chitwood WR Jr (2008) Minimally invasive mitral valve surgery: a systematic review and meta-analysis. Eur J Cardiothorac Surg 34:943–952

    Article  PubMed  Google Scholar 

  2. Srivastava S, Gadasalli S, Agusala M, Kolluru R, Naidu J, Shroff M, Barrera R, Quismundo S, Srivastava V (2006) Use of bilateral internal thoracic arteries in CABG through lateral thoracotomy with robotic assistance in 150 patients. Ann Thorac Surg 81:800–806

    Article  PubMed  Google Scholar 

  3. Iribarne A, Easterwood R, Chan EY, Yang J, Soni L, Russo MJ, Smith CR, Argenziano M (2011) The golden age of minimally invasive cardiothoracic surgery: current and future perspectives. Future Cardiol 7:333–746

    Article  PubMed Central  PubMed  Google Scholar 

  4. Intuitive Surgical (2013) Surgical specialties – regulatory clearance. http://www.intuitivesurgical.com/specialties/regulatory-clearance.html. Accessed 21 Feb 2013

  5. Robicsek F (2008) Robotic cardiac surgery: time told! J Thorac Cardiovasc Surg 135:243–246

    Article  PubMed  Google Scholar 

  6. Cooley DA (2000) Beating-heart surgery for coronary revascularization: is it the most important development since the introduction of the heart-lung machine? Ann Thorac Surg 70:1779–1781

    Article  CAS  PubMed  Google Scholar 

  7. Contini M, Iacò A, Iovino T, Teodori G, Di Giammarco G, Mazzei V, Commodo M, Calafiore AM (1999) Current results in off pump surgery. Eur J Cardiothorac Surg 16:69–72

    Article  Google Scholar 

  8. Watanabe G, Misaki T, Kotoh K, Yamashita A, Ueyama K (1998) Bilateral thoracoscopic minimally invasive direct coronary artery bypass grafting using internal thoracic arteries. Ann Thorac Surg 65:1673–1675

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava SP, Patel KN, Skantharaja R, Barrera R, Nanayakkara D, Srivastava V (2003) Off-pump complete revascularization through a left lateral thoracotomy (ThoraCAB): the first 200 cases. Ann Thorac Surg 76:46–49

    Article  PubMed  Google Scholar 

  10. Watanabe G, Takahashi M, Misaki T, Kotoh K, Doi Y (1999) Beating-heart endoscopic coronary artery surgery. Lancet 354:2131–2132

    Article  CAS  PubMed  Google Scholar 

  11. Stephenson ER Jr, Sankholkar S, Ducko CT, Damiano RJ Jr (1998) Robotically assisted microsurgery for endoscopic coronary artery bypass grafting. Ann Thorac Surg 66:1064–1067

    Article  PubMed  Google Scholar 

  12. Loulmet D, Carpentier A, d’ Attelis N et al (1999) Endoscopic coronary artery bypass grafting with the aid of computer-assisted instruments. J Thorac Cardiovasc Surg 48:4–10

    Article  Google Scholar 

  13. Falk V, Diegeler A, Walther T, Banusch J, Brucerius J, Raumans J, Autschbach R, Mohr FW (2000) Total endoscopic computer enhanced coronary artery bypass grafting. Eur J Cardiothorac Surg 17:38–45

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava S, Gadasalli S, Agusala M, Kolluru R, Barrera R, Quismundo S, Kreaden U, Jeevanandam V (2010) Beating heart totally endoscopic coronary artery bypass. Ann Thorac Surg 89:1873–1880

    Article  PubMed  Google Scholar 

  15. Hamman B, White C (2004) Interrupted distal anastomosis: the interrupted “porcupine” technique. Ann Thorac Surg 78:722–724

    Article  PubMed  Google Scholar 

  16. Schachner T, Bonaros N, Wiedemann D, Weidinger F, Feuchtner G, Friedrich G, Laufer G, Bonatti J (2009) Training surgeons to perform robotically assisted totally endoscopic coronary surgery. Ann Thorac Surg 88:523–527

    Article  PubMed  Google Scholar 

  17. Balkhy HH, Wann LS, Arnsdorf SE, Maciolek K (2009) Long term patency evaluation of the cardica c-port distal anastomotic device in coronary bypass grafting: initial experience in 91 grafts. Innovations 4:158

    Google Scholar 

  18. Matschke KE, Gummert JF, Demertzis S et al (2005) The Cardica C-Port system: clinical and angiographic evaluation of a new device for automated, compliant distal anastomoses in coronary artery bypass grafting surgery—a multicenter prospective clinical trial. J Thorac Cardiovasc Surg 130:1645–1652

    Article  PubMed  Google Scholar 

  19. Takayama T, Hiro T, Hirayama A (2010) Is angioplasty able to become the gold standard of treatment beyond bypass surgery for patients with multivessel coronary artery disease? Therapeutic strategies for 3-vessel coronary artery disease: OPCAB vs PCI (PCI-Side). Circ J 74:2744–2749

    Article  PubMed  Google Scholar 

  20. Nishimi M, Tashiro T (2010) Off-pump coronary artery bypass vs percutaneous coronary intervention. Therapeutic strategies for 3-vessel coronary artery disease: OPCAB vs PCI (PCI-Side). Circ J 74:2750–2757

    Article  PubMed  Google Scholar 

  21. Gao C, Yang M, Wu Y, Wang G, Xiao C, Liu H, Lu C (2009) Hybrid coronary revascularization by endoscopic robotic coronary artery bypass grafting on beating heart and stent placement. Ann Thorac Surg 87:737–741

    Article  PubMed  Google Scholar 

  22. Bonatti JO, Zimrin D, Lehr EJ, Vesely M, Kon ZN, Wehman B, de Biasi AR, Hofauer B, Weidinger F, Schachner T, Bonaros N, Friedrich G (2012) Hybrid coronary revascularization using robotic totally endoscopic surgery: perioperative outcomes and 5-year results. Ann Thorac Surg 94:1920–1926, discussion 1926

    Article  PubMed  Google Scholar 

  23. Bonatti J, Lehr E, Vesely MR, Friedrich G, Bonaros N, Zimrin D (2010) Hybrid coronary revascularization: which patients? When? How? Curr Opin Cardiol 25:568–574

    Article  PubMed  Google Scholar 

  24. Srivastava S, Barrera R, Quismundo S (2012) One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion. Ann Thorac Surg 94:1463–1468

    Article  PubMed  Google Scholar 

  25. Srivastava S, Gadasalli S, Tijerina O, Barrera R, Quismundo S, Srivastava V (2006) Planned simultaneous beating-heart totally endoscopic coronary artery bypass (TECAB) and percutaneous intervention in a single operative setting. Innovations 1:239–242

    PubMed  Google Scholar 

  26. Carpentier A, Loulmet D, Aupecle B, Kieffer JP, Tournay D, Guibourt P, Fiemeyer A, Meleard D, Richomme P (1998) Cardon C [Computer assisted open heart surgery. First case operated on with success]. CR Acad Sci III 321:437–442

    Article  CAS  Google Scholar 

  27. Mohr FW, Falk V, Diegeler A, Autschback R (1999) Computer-enhanced coronary artery bypass surgery. J Thorac Cardiovasc Surg 117:1212–1214

    Article  CAS  PubMed  Google Scholar 

  28. Grossi EA, Lapietra A, Applebaum RM, Ribakove GH, Galloway AC, Baumann FG, Ursomanno P, Steinberg BM, Colvin SB (2000) Case report of robotic instrument-enhanced mitral valve surgery. J Thorac Cardiovasc Surg 120:1169–1171

    Article  CAS  PubMed  Google Scholar 

  29. Chitwood WR Jr, Nifong LW, Elbeery JE, Chapman WH, Albrecht R, Kimitral V, Young JA (2000) Robotic mitral valve repair: trapezoidal resection and prosthetic annuloplasty with the da vinci surgical system. J Thorac Cardiovasc Surg 120:1171–1172

    Article  PubMed  Google Scholar 

  30. Nifong LW, Chu VF, Bailey BM, Maziarz DM, Sorrell VL, Holbert D, Chitwood WR Jr (2003) Robotic mitral valve repair: experience with the da Vinci system. Ann Thorac Surg 75:438–442, discussion 43

    Article  PubMed  Google Scholar 

  31. Nifong LW, Chitwood WR, Pappas PS, Smith CR, Argenziano M, Starnes VA, Shah PM (2005) Robotic mitral valve surgery: a United States multicenter trial. J Thorac Cardiovasc Surg 129:1395–1404

    Article  PubMed  Google Scholar 

  32. Rodríguez E, Kypson AP, Moten SC, Nifong LW, Chitwood WR Jr (2006) Robotic mitral surgery at East Carolina University: a 6 year experience. Int J Med Robot 2:211–215

    Article  PubMed  Google Scholar 

  33. Suri RM, Antiel RM, Burkhart HM, Huebner M, Li Z, Eton DT, Topilsky T, Sarano ME, Schaff HV (2012) Quality of life after early mitral valve repair using conventional and robotic approaches. Ann Thorac Surg 93:761–769

    Article  PubMed  Google Scholar 

  34. Cohn LH, Adams DH, Couper GS, Bichell DP, Rosborough DM, Sears SP, Aranki SF (1997) Minimally invasive cardiac valve surgery improves patient satisfaction while reducing costs of cardiac valve replacement and repair. Ann Surg 226:421–426, discussion 427–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Le Bret E, Papadatos S, Folliguet T, Carbognani D, Pétrie J, Aggoun Y, Batisse A, Bachet J, Laborde F (2002) Interruption of patent ductus arteriosus in children: robotically assisted versus videothoracoscopic surgery. J Thorac Cardiovasc Surg 123:973–976

    Article  PubMed  Google Scholar 

  36. Reichenspurner H, Boehm DH, Welz A et al (1998) 3-D-video- and robot-assisted minimally invasive ASD closure using the port-access techniques. Heart Surg Forum 1:104–106

    CAS  PubMed  Google Scholar 

  37. Gao C, Yang M, Wang G, Wang J, Xiao C, Wu Y, Li J (2010) Totally endoscopic robotic atrial septal defect repair on the beating heart. Heart Surg Forum 13:155–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Watanabe, G. (2014). Cardiac Surgery: Overview. In: Watanabe, G. (eds) Robotic Surgery. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54853-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54853-9_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54852-2

  • Online ISBN: 978-4-431-54853-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics