Skip to main content

Evolution History of Extrasolar Planetary Systems

  • Chapter
  • First Online:
Measurements of Spin-Orbit Angles for Transiting Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 391 Accesses

Abstract

In this chapter, we review the basics on the detection and characterization of exoplanetary systems. We first focus on the two leading techniques (the radial velocity and transit methods), deriving the basic quantities that can be extracted from observations with each technique. We then see the distributions of planetary parameters, and introduce various “planetary migrations” in order to account for the presence of close-in giant planets. Finally, we describe the measurements of the Rossiter-McLaughlin (RM) effect for probing the angle between the host star’s spin axis and planetary orbital axis. We show that measurements of the RM effect are an important key to confirm or refute the theoretical models regarding the planetary migrations. A summary and the current status of RM measurements are presented together with possible mechanisms to explain the observed distribution of the spin-orbit angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://exoplanet.eu/catalog/.

  2. 2.

    There has been no clear definition of “super-Earth” but it is usually referred to the planets with mass ranging between \(\sim 1-10 M_\oplus \).

  3. 3.

    List of RM measurements are summarized at the following website: http://ooo.aip.de/People/rheller/content/main_spinorbit.html.

References

  1. Albrecht, S., Winn, J.N., Johnson, J.A., Howard, A.W., Marcy, G.W., Butler, R.P., Arriagada, P., Crane, J.D., Shectman, S.A., Thompson, I.B., Hirano, T., Bakos, G., Hartman, J.D.: Obliquities of hot jupiter host stars: evidence for tidal interactions and primordial misalignments. Astrophys. J. 757, 18 (2012). doi:10.1088/0004-637X/757/1/18

    Article  ADS  Google Scholar 

  2. Chambers, J.E.: Planetary migration: what does it mean for planet formation? Annu. Rev. Earth Planet. Sci. 37, 321–344 (2009). doi:10.1146/annurev.earth.031208.100122

    Article  ADS  Google Scholar 

  3. Chatterjee, S., Ford, E.B., Matsumura, S., Rasio, F.A.: Dynamical outcomes of planet-planet scattering. Astrophys. J. 686, 580–602 (2008). doi:10.1086/590227

    Article  ADS  Google Scholar 

  4. Danby, J.M.A.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond, VA (1988)

    Google Scholar 

  5. Fabrycky, D., Tremaine, S.: Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007). doi:10.1086/521702

    Article  ADS  Google Scholar 

  6. Fabrycky, D.C., Winn, J.N.: Exoplanetary spin-orbit alignment: results from the ensemble of Rossiter-McLaughlin observations. Astrophys. J. 696, 1230–1240 (2009). doi:10.1088/0004-637X/696/2/1230

    Article  ADS  Google Scholar 

  7. Gaudi, B.S.: Microlensing by exoplanets. In: Seager, S. (ed.) Exoplanets, pp. 79–110. University of Arizona Press, Tucson, Arizona (2011)

    Google Scholar 

  8. Lin, D.N.C., Bodenheimer, P., Richardson, D.C.: Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996). doi:10.1038/380606a0

    Article  ADS  Google Scholar 

  9. Lubow, S.H., Ida, S.: Planet migration. In: Seager, S. (ed.) Exoplanets, pp. 347–371. University of Arizona Press, Tucson, Arizona (2011)

    Google Scholar 

  10. Marzari, F., Weidenschilling, S.J.: Eccentric Extrasolar Planets: The Jumping Jupiter Model. Icarus 156, 570–579 (2002). doi:10.1006/icar.2001.6786

  11. Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995). doi:10.1038/378355a0

    Article  ADS  Google Scholar 

  12. Murray, C.D., Murray, A.C.M.: Keplerian orbits and dynamics of exoplanets. In: Seager, S. (ed.) Exoplanets, pp. 15–23. University of Arizona Press, Tucson, Arizona (2011)

    Google Scholar 

  13. Nagasawa, M., Ida, S., Bessho, T.: Formation of hot planets by a combination of planet scattering, tidal circularization, and the Kozai mechanism. Astrophys. J. 678, 498–508 (2008). doi:10.1086/529369

    Article  ADS  Google Scholar 

  14. Pinsonneault, M.H., DePoy, D.L., Coffee, M.: The mass of the convective zone in FGK main-sequence stars and the effect of accreted planetary material on apparent metallicity determinations. Astrophys. J. 556, L59–L62 (2001). doi:10.1086/323531

    Article  ADS  Google Scholar 

  15. Queloz, D., Eggenberger, A., Mayor, M., Perrier, C., Beuzit, J.L., Naef, D., Sivan, J.P., Udry, S.: Detection of a spectroscopic transit by the planet orbiting the star HD209458. Astron. Astrophys. 359, L13–L17 (2000)

    ADS  Google Scholar 

  16. Rasio, F.A., Ford, E.B.: Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996). doi:10.1126/science.274.5289.954

    Article  ADS  Google Scholar 

  17. Traub, W.A., Oppenheimer, B.R.: Direct Imaging of Exoplanets. In: Seager, S. (ed.) Exoplanets, pp. 111–156. University of Arizona Press, Tucson, Arizona (2011)

    Google Scholar 

  18. Triaud, A.H.M.J.: The time dependence of hot Jupiters’ orbital inclinations. Astron. Astrophys. 534, L6 (2011). doi:10.1051/0004-6361/201117713

    Article  ADS  Google Scholar 

  19. Winn, J.N.: Transits and occultations. In: Seager, S. (ed.) Exoplanets, pp. 55–77. University of Arizona Press, Tucson, Arizona (2011)

    Google Scholar 

  20. Winn, J.N., Fabrycky, D., Albrecht, S., Johnson, J.A.: Hot stars with hot Jupiters have high obliquities. Astrophys. J. 718, L145–L149 (2010). doi:10.1088/2041-8205/718/2/L145

    Article  ADS  Google Scholar 

  21. Wu, Y., Murray, N.: Planet migration and binary companions: The case of HD 80606b. Astrophys. J. 589, 605–614 (2003). doi:10.1086/374598

    Article  ADS  Google Scholar 

  22. Yi, S., Demarque, P., Kim, Y.C., Lee, Y.W., Ree, C.H., Lejeune, T., Barnes, S.: Toward better age estimates for stellar populations: The Y2 isochrones for solar mixture. Astrophys. J. Suppl. Ser. 136, 417–437 (2001). doi:10.1086/321795

    Article  ADS  Google Scholar 

  23. Zahn, J.P.: Tidal friction in close binary stars. Astron. Astrophys. 57, 383–394 (1977)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruyuki Hirano .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Hirano, T. (2014). Evolution History of Extrasolar Planetary Systems. In: Measurements of Spin-Orbit Angles for Transiting Systems. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54586-6_2

Download citation

Publish with us

Policies and ethics