Skip to main content

Microenvironment Within the Injured Spinal Cord Focusing on IL-6

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord

Abstract

In recent years, a variety of studies have been conducted towards the goal of achieving regeneration of the central nervous system using neural stem cells. However, various complex factors are involved in the regulation of neural stem cell differentiation, and many unresolved questions remain. It has been reported that after spinal cord injury, the intrinsic neural stem cells do not differentiate into neurons but into astrocytes, resulting in the formation of glial scars. Based on reports that the expression of IL-6 and the IL-6 receptor is sharply increased in the acute stages after spinal cord injury and that IL-6 may serve as a factor strongly inducing the differentiation of neural stem cells into astrocytes, we examined the effects of an antibody to the IL-6 receptor in cases of spinal cord injury and found that the antibody indeed suppressed secondary injury (caused by inflammatory reactions) and glial scar formation, facilitating functional recovery. In this paper, we present the data from this investigation and discuss the relationship between IL-6 signals and spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hugenholtz H (2003) Methylprednisolone for acute spinal cord injury: not a standard of care. Can Med Assoc J 168:1145–1146

    Google Scholar 

  2. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    CAS  PubMed  Google Scholar 

  3. Okano H (2002) The stem cell biology of the central nervous system. J Neurosci Res 69:698–707

    Article  CAS  PubMed  Google Scholar 

  4. Johansson CB, Momma S, Clarke DL et al (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  5. Bradbury EJ, Moon LD, Popat RJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS (2003) Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol 184:313–325

    Article  CAS  PubMed  Google Scholar 

  7. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  CAS  PubMed  Google Scholar 

  8. Okada S, Nakamura M, Mikami Y et al (2004) Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 76:265–276

    Article  CAS  PubMed  Google Scholar 

  9. Bonni A, Sun Y, Nadal-Vicens M et al (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483

    Article  CAS  PubMed  Google Scholar 

  10. Klein MA, Moller JC, Jones LL et al (1997) Impaired neuroglial activation in interleukin-6 deficient mice. Glia 19:227–233

    Article  CAS  PubMed  Google Scholar 

  11. Brunello AG, Weissenberger J, Kappeler A et al (2000) Astrocytic alterations in interleukin-6/Soluble interleukin-6 receptor alpha double-transgenic mice. Am J Pathol 157:1485–1493

    Article  CAS  PubMed  Google Scholar 

  12. Lacroix S, Chang L, Rose-John S, Tuszynski MH (2002) Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J Comp Neurol 454:213–228

    Article  CAS  PubMed  Google Scholar 

  13. Ma M, Basso DM, Walters P, Stokes BT, Jakeman LB (2001) Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp Neurol 169:239–254

    Article  CAS  PubMed  Google Scholar 

  14. Dumont AS, Dumont RJ, Oskouian RJ (2002) Will improved understanding of the pathophysiological mechanisms involved in acute spinal cord injury improve the potential for therapeutic intervention? Curr Opin Neurol 15:713–720

    Article  PubMed  Google Scholar 

  15. Popovich PG, Jones TB (2003) Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci 24:13–17

    Article  CAS  PubMed  Google Scholar 

  16. Mukaino M, Nakamura M, Yamada O et al (2010) Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation. Exp Neurol 224: 403–414

    Article  CAS  PubMed  Google Scholar 

  17. Guerrero AR, Uchida K, Nakajima H et al (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9:40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Choy EH, Isenberg DA, Garrood T et al (2002) Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose- escalation trial. Arthritis Rheum 46:3143–3150

    Article  CAS  PubMed  Google Scholar 

  19. Marz P, Cheng JG, Gadient RA et al (1998) Sympathetic neurons can produce and respond to interleukin 6. Proc Natl Acad Sci USA 95:3251–3256

    Article  CAS  PubMed  Google Scholar 

  20. Loddick SA, Turnbull AV, Rothwell NJ (1998) Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18:176–179

    Article  CAS  PubMed  Google Scholar 

  21. Okano H, Ogawa Y, Nakamura M et al (2003) Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 14:191–198

    Article  CAS  PubMed  Google Scholar 

  22. Okano H, Nakamura M, Yoshida K et al (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura M, Okano H (2013) Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 23(1):70–80

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest  The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nakamura, M. (2014). Microenvironment Within the Injured Spinal Cord Focusing on IL-6. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics