Skip to main content

DCD for Liver Transplantation

  • Chapter
  • First Online:
Marginal Donors

Abstract

A critical shortage of donor liver grafts has promoted the creation of strategies to increase the donor pool. The Institute of Medicine and the Health Resources and Services Administration statement encourages using grafts from higher risk donors in order to decrease the growing waiting list [1–3]. In March 1995, an international workshop on non-heart-beating donation was held in Maastricht. Potential donors after cardiac death (DCDs) are classified using the Maastricht classification [4]. Categories 1, 2, and 4 include uncontrolled DCDs, and Category 3 includes controlled DCDs. DCDs have come to represent the fastest growing proportion of the donor pool, thus increasing from approximately 1 % of all deceased donors in 1996 to 11 % of deceased donors in 2008. In some United Network for Organ Sharing (UNOS) regions with limited standard criteria for donors, DCDs comprise up to 16–21 % of the total donor pool [5]. Recent data regarding kidney transplants show no differences between the long-term outcomes of kidney grafts from DCDs and those from brain-dead donors (DBDs), although the incidence of delayed graft function (DGF) is higher in DCD kidneys [6–8]. Following the successful use of DCD kidney grafts for transplantation, interest has moved toward using extrarenal organs such as the liver, pancreas, and lungs [9]. Recently, a number of transplant programs have begun to use livers from DCDs. Although the use of extrarenal DCD grafts is increasing, this endeavor is still in the midst of development. In the early phase, liver transplantations from DCDs do not always show favorable post-transplant results compared to liver transplantations from DBDs. Livers from DCDs have been found to display diffuse hepatocyte necrosis, increased platelet adhesion, an absence of bile flow, and depletion of ATP. The incidence of DGF in the kidneys is high; however, it can be treated with hemodialysis until the kidneys recover. In contrast, DGF in the liver often requires retransplantation as rescue therapy. For this reason, there has been great caution in using DCD liver grafts. However, in recent years, the incidences of primary nonfunction (PNF) and severe DGF have been remarkably reduced due to the use of selected controlled DCD livers, better selection criteria, and shorter warm and cold ischemic times. Regarding preservation, the introduction of UW solution has improved the quality of cold preserved organ preservation, even for livers. However, the major principle of hypothermic liver preservation is the reduction of metabolic activity. Recently, the Barcelona group has begun to resuscitate uncontrolled DCD donors with the use of normothermic extracorporeal machine perfusion (NECMO) [10]. The use of warm perfusion may provide full metabolic support to DCD livers and establish whether a graft is viable. Again, development for clinical use of DCD liver graft is still midst. Multiple strategies will be required (Table 10.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sung RS, Galloway J, Tuttel-Newhall JE, et al. Organ donation and utilization in the United States 1997–2006. Am J Transplant. 2008;8(4pt 2):922–34.

    Article  CAS  PubMed  Google Scholar 

  2. Rotts Jr JT, Herdman R. Non-heart beating organ transplantation and ethical issues in procurement. Washington DC: National Academy Press; 1997.

    Google Scholar 

  3. Tuttel-Newhall JE, Krishnan SM, Levy MP, McBrude V, et al. Organ donation and utilization in the United States 1997–2007. Am J Transplant. 2009;914(Pt21):879–93.

    Article  Google Scholar 

  4. Kootstra G, Daemen J, Oomen A. Categories of non-heart-beating donors. Transplant Proc. 1995;27(5):2893–4.

    CAS  PubMed  Google Scholar 

  5. United Network for Organ Sharing. Available at: http://www.unos.org (2010). Accessed 15 Feb 2010.

  6. Koffman CG, Bewick M, Chang RW, et al. Comparative study of the use of systolic and asystolic kidney donors between 1988 and 1991. Transplant Proc. 1993;25:1527–9.

    CAS  PubMed  Google Scholar 

  7. Weber M, Dindo D, Demartines N, et al. Kidney transplantation from donors without a heartbeat. N Eng J Med. 2002;347(4):248–55.

    Article  Google Scholar 

  8. Sanchez Fructuono AI, Olatz D, Torrentle J, et al. Renal transplantation from non-heart beating donors: a promising alternative to enlarge the donor pool. J Am Soc Nephrol. 2000;11(2):350–5.

    Google Scholar 

  9. D'Alessandro AM, Hoffman RM, Knecchtle SJ, et al. Successful extrarenal transplantation from non-heart beating donors. Transplantation. 1995;59(7):977–82.

    Article  PubMed  Google Scholar 

  10. Fondeviella C, Hessheimer AJ, Ruiz A, et al. Liver transplant using donors after unexpected cardiac death: novel preservation protocol and acceptance criteria. Am J Transplant. 2007;7:1849–55.

    Article  Google Scholar 

  11. Mateo R, Cho Y, Sigh G, et al. Risk factors for graft survival after cardiac death donors: an analysis of OPTN/UNOS data. Am J Transplant. 2006;6(4):791–6.

    Article  CAS  PubMed  Google Scholar 

  12. Lee KW, Simpkins CF, Montgomery RA, et al. Factors affecting graft survival after liver transplantation from donation after cardiac death donors. Transplantation. 2006;82(12):1683–8.

    Article  PubMed  Google Scholar 

  13. Mathur AK, Heimbach J, Steflick DE, et al. Donation after cardiac death liver transplantation: predictors of outcome. Am J Transplant. 2010;10:2512–9.

    Article  CAS  PubMed  Google Scholar 

  14. De Vera ME, Lopez-Solis R, Dvorchil I, et al. Liver transplantation using donation after cardiac death donors: long-term follow up from a single center. Am J Transplant. 2009;9:77381.

    Google Scholar 

  15. Institute of Medicine. Non-heart-beating organ transplantation: medical and ethical issues in procurement. Washington, DC: National Academy Press; 1997. p. 104

    Google Scholar 

  16. Institute of Medicine. Non-heart-beating organ transplantation: practice and protocols. Washington, DC: National Academy Press; 2000. p. 174.

    Google Scholar 

  17. Institute of Medicine. Organ donation: opportunities for action. Washington, DC: National Academy press; 2006. p. 358.

    Google Scholar 

  18. Bernat JL, D’Alessandro AM, Port FK, et al. Report of a national conference on donation after cardiac death. Am J Transplant. 2006;6:281–91.

    Article  CAS  PubMed  Google Scholar 

  19. Ethics Committee, American College of Critical Care Medicine, Society of Critical Care Medicine. Recommendations for non-heart-beating organ donation: a position paper by the Ethics Committee, American College of Critical Care Medicine, Society of Critical Care Medicine. Crit Care Med. 2001;29:1826–31.

    Article  Google Scholar 

  20. Otero A, Co’mez-Gutie’rrez M, Sua’rez F, et al. Liver transplantation from Maastricht category 2 non-heart-beating donors. Transplantation. 2003;76:1068–73.

    Article  PubMed  Google Scholar 

  21. Sua’rez F, Otero A, Solla M, et al. Biliary complications after liver transplantation from Maastricht category-2 non-heart-beating donors. Transplantation. 2008;85:9–14.

    Article  Google Scholar 

  22. Muiesan P, Girlanda R, Jassem W, et al. Single center experience with liver transplantation from controlled non-heart beating donors, a viable source of grafts. Ann Surg. 2005;242(5):732–8.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Reich DJ. Non-heart-beating donor organ procurement. In: Humar A, Matas AJ, Payne WD, editors. Atlas of organ transplantation. London: Springer; 2006.

    Google Scholar 

  24. Casa viella A, Ramirez C, Shapiro R, et al. Experience with liver and kidney allografts from non-heart beating donors. Transplantation. 1995;59(2):197–203.

    Article  Google Scholar 

  25. Magliocca JF, Magee JC, Rowe SA, et al. Extracorporeal support for organ donation after cardiac death effectively expands the donor pool. J Trauma. 2005;58:1095–102.

    Article  PubMed  Google Scholar 

  26. Meine MH, Zabiteli ML, Neumann J, et al. Randomized clinical assay for hepatic grafts preservation with University of Wisconsin or histidine tryptophan-ketoglutarate solution in liver transplantation. Transplant Proc. 2006;38(6):1872–5.

    Article  CAS  PubMed  Google Scholar 

  27. Marshall VC, Ross H, Scot DF, et al. Preservation of cadaveric renal allografts-comparison of flushing and pumping techniques. Proc Eur Dial Transplant Asoc. 1977;14:301–9.

    Google Scholar 

  28. Guarrera JM, Polyak M, O'MarArrington B, et al. Pulsatile machine perfusion with Vasosol solution improves early graft function after cadaveric renal transplantation. Transplantation. 2004;77(8):1264–8.

    Article  PubMed  Google Scholar 

  29. Guarrera JV, Henrry SP, Samstein B, et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 2010;10:372–87.

    Article  CAS  PubMed  Google Scholar 

  30. Doorschodt BM, Bessems M, van Vliet AK, et al. The first disposable perfusion preservation system for kidney and liver grafts. Ann Transplant. 2004;9(2):40–1.

    Google Scholar 

  31. Bessems M, Doorschodt BM, van Vliet AK, et al. Improved rat liver preservation by hypothermic continuous machine perfusion using polysol, a new enriched preservation solution. Liver Transpl. 2005;11(5):539–46.

    Article  PubMed  Google Scholar 

  32. Vogel T, Brodkmann JG, Couissios C et al: The role of normothermic etracorporeal perfusion in minimizing ishemia reperfusion injury. Transplantation Reviews. 26 (2012)156–162.

    Article  PubMed  Google Scholar 

  33. Brasile L, Stubentisky BM, Booster MH, et al. Hypothermia – a limiting factor in using warm ischemically damaged kidneys. Am J Transplant. 2001;1(4):316–20.

    Article  CAS  PubMed  Google Scholar 

  34. Ma Y, Wang GD, Wu LW, et al. Dynamical changing patterns of histological structure and ultrastructure of liver graft undergoing warm ischemia injury from non-heart beating donor in rats. World J Gastoroenterol. 2006;12(30):1942–5.

    Google Scholar 

  35. Uchiyama M, Kozaki K, Matsuno N, et al. Usefulness of preservation method by machine perfusion and pentoxifylline on the liver transplantation from non-heart beating donor. J Tokyo Med Univ. 2000;58(6):743–56.

    CAS  Google Scholar 

  36. Bessems M, Doorschodt BM, van Marle J, et al. Improved machine perfusion preservation of the non-heart-beating donor rat liver using Polysol: a new machine perfusion preservation solution. Liver Transpl. 2005;11:1379–88.

    Article  PubMed  Google Scholar 

  37. van der Plaats A, Maathuis MH, T Hart NA, et al. The Groningen hypothermic liver perfusion pump: functional evaluation of a new machine perfusion system. Ann Biomed Eng. 2006;34:1924–34.

    Article  PubMed  Google Scholar 

  38. Obara H, Matsuno N, Enosawa S, et al. Pre-transplant screening and viability evaluation of a liver graft using a machine perfusion. Transplant Proc. 2012;44(4):959–61.

    Article  CAS  PubMed  Google Scholar 

  39. Abt P, Crawford M, Desai N, et al. Liver transplantation from controlled non-heart-beating donors: an increased incidence of biliary complications. Transplantation. 2003;75:1659–63.

    Article  PubMed  Google Scholar 

  40. Foley DP, Fernandez LA, Leverson G, Chin LT, et al. Donation after cardiac death: the University of Wisconsin experience with liver transplantation. Ann Surg. 2005;242:724–31.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Fujita S, Mizuno S, Fujikawa T, et al. Liver transplantation from donation after cardiac death: a single center experience. Transplantation. 2007;84:46–9.

    Article  PubMed  Google Scholar 

  42. Abt PL, Desai NM, Crawford MD, et al. Survival following liver transplantation from non-heart beating donors. Ann Surg. 2004;239:87–92.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Merion RM, Pelletier SJ, Goodrich N, et al. Donation after cardiac death as a strategy to increase deceased donor liver availability. Ann Surg. 2006;244:555–62.

    PubMed Central  PubMed  Google Scholar 

  44. Lee CY, et al. Functional recovery of preserved livers following warm ischemia: improvement by machine perfusion preservation. Transplantation. 2002;74:944–51.

    Article  CAS  PubMed  Google Scholar 

  45. Dutkowski P, Furtner K, Tian Y, et al. Novel short-term hypohermic oxygenated perfusion (HPE) system prevents injury in rat liver graft from nonheart beating donor. Ann Surg. 2006;24:968–76.

    Google Scholar 

  46. Olschewski P. The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers. Cryobiology. 2010;60:343–7.

    Article  Google Scholar 

  47. Vanteui M. Correlation between the liver temperature employed during machine perfusion and reperfusion damage: role of Ca2+. Liver Transpl. 2008;14:494–503.

    Article  Google Scholar 

  48. Brettschneider L, Dalonze P, Huget C, et al. Successful orthotopic transplantation of liver homografts after 8–25 hours preservation. Surg Forum. 1967;18:376.

    PubMed Central  PubMed  Google Scholar 

  49. Starzl TE. Experience in hepatic transplantation. Philadelphia: Saunders; 1969.

    Google Scholar 

  50. Pinaar BH, Lindel SL, van Gulik T, et al. Seventy-two-hour preservation of the canine liver by machine perfusion. Transplantation. 1990;49(2):258–60.

    Article  Google Scholar 

  51. Guarrera JV, Esterves J, Boykin J, et al. Hypothermic machine perfusion of liver grafts for transplantation; technical development in human discard and miniature swine models. Transplantation Proc. 2005;37(1):323–5.

    Article  CAS  Google Scholar 

  52. Bessems M, Doorscodt BM, van Vliet PS, et al. Improved rat liver preservation by hypothermic continuous machine preservation of the pig liver using a new preservation solution. Polusol Transplant Proc. 2006;28:1238–42.

    Article  Google Scholar 

  53. Monbaliu D, Crabbé T, Roskams T, et al. Livers from non-heart-beating donors tolerate short periods of warm ischemia. Transplantation. 2005;79:1226–30.

    Article  PubMed  Google Scholar 

  54. Takada Y, Taniguchi H, Fukunaga K, et al. Hepatic allograft procurement from non-heart-beating donors: limits of warm ischemia in porcine liver transplantation. Transplantation. 1997;63(3):369–73.

    Article  CAS  PubMed  Google Scholar 

  55. de Rougemont O, Breilenstein S, Leskosek B, et al. One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Ann Surg. 2009;250:674–83.

    Article  PubMed  Google Scholar 

  56. Monbaliu A, Vekemans K, Hoektra H, et al. Multifactorial biological modulation of warm ischemia reperfusion injury in liver transplantation from non-heart-beating donors eliminates primary nonfunction and reduces bile salt toxicity. Ann Surg. 2009;250(5):808–17.

    Article  PubMed  Google Scholar 

  57. Shigeta T, Matsuno N, Obara H, et al. Functional recovery of donation after cardiac death liver graft by continuous machine perfusion preservation in pigs. Transpl Proc. 2012;44:946–7.

    Article  CAS  Google Scholar 

  58. Shigeta T, Matsuno N, Obara, H. et al: Impact of Rewarming Preservation by Continuous Machine Perfusion: Improved Post-Transplant Recovery in Pigs Transpl Proc. (2103) 45, 1684–1689.

    Google Scholar 

  59. Galcia-Valdecasas JC, Tabet J, Valern R, et al. Liver conditioning after cardiac arrest: the use of normothermic recirculation in an experimental animal model. Transpl Int. 1998;11:424–32.

    Article  Google Scholar 

  60. Net M, Valero R, Almenara R, et al. The effect of normothermic recirculation is mediated by ischemic preconditioning in NHBD liver transplantation. Am J Transplant. 2005;5:2385–93.

    Article  CAS  PubMed  Google Scholar 

  61. Readdy P, Bhattacharinjya S, Maniaku N, et al. Preservation of porcine non-heart-beating donor livers by sequential cold storage and warm perfusion. Transplantation. 2004;17:1328–32.

    Article  Google Scholar 

  62. Readdy P, Greenwood J, Maniaka N, et al. Non-heart beating donor porcine livers: the adverse effect of cooling. Liver transplant. 2005;16:35–8.

    Article  Google Scholar 

  63. Fisher RA, Strom SC. Human hepatocyte transplantation: worldwide results. Transplantation. 2006;82(4):441–9.

    Article  PubMed  Google Scholar 

  64. Meyburg J, Schmidt J, Hoffmann GF. Liver cell transplantation in children. Clin Transplant. 2009;23 Suppl 21:75–82.

    Article  PubMed  Google Scholar 

  65. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, Dorko K, Sauter BV, Strom SC. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. 1998;338(20):1422–6.

    Article  CAS  PubMed  Google Scholar 

  66. Lee KW, Lee JH, Shin SW, Kim SJ, Joh JW, Lee DH, Kim JW, Park HY, Lee SY, Lee HH, Park JW, Kim SY, Yoon HH, Jung DH, Choe YH, Lee SK. Hepatocyte transplantation for glycogen storage disease type Ib. Cell Transplant. 2007;16(6):629–37.

    PubMed  Google Scholar 

  67. Mitry RR, Dhawan A, Hughes RD, Bansal S, Lehec S, Terry C, Heaton ND, Karani JB, Mieli-Vergani G, Rela M. One liver, three recipients: segment IV from split-liver procedures as a source of hepatocytes for cell transplantation. Transplantation. 2004;77(10):1614–6.

    Article  PubMed  Google Scholar 

  68. Puppi J, Tan N, Mitry RR, Hughes RD, Lehec S, Mieli-Vergani G, Karani J, Champion MP, Heaton N, Mohamed R, Dhawan A. Hepatocyte transplantation followed by auxiliary liver transplantation–a novel treatment for ornithine transcarbamylase deficiency. Am J Transplant. 2008;8(2):427–52.

    Google Scholar 

  69. Stéphenne X, Najimi M, Smets F, Reding R, de Ville de Goyet J, Sokal EM. Cryopreserved liver cell transplantation controls ornithine transcarbamylase deficient patient while awaiting liver transplantation. Am J Transplant. 2005;5(8):2058–61.

    Article  PubMed  Google Scholar 

  70. Sokal EM. From hepatocytes to stem and progenitor cells for liver regenerative medicine: advances and clinical perspectives. Cell Prolif. 2011;44 Suppl 1:39–43.

    Article  PubMed  Google Scholar 

  71. Meyburg J, Das AM, Hoerster F, Lindner M, Kriegbaum H, Engelmann G, Schmidt J, Ott M, Pettenazzo A, Luecke T, Bertram H, Hoffmann GF, Burlina A. One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation. 2009;87(5):636–41.

    Article  PubMed  Google Scholar 

  72. Schneider A, Attaran M, Meier PN, Strassburg C, Manns MP, Ott M, Barthold M, Arseniev L, Becker T, Panning B. Hepatocyte transplantation in an acute liver failure due to mushroom poisoning. Transplantation. 2006;82(8):1115–6.

    Article  PubMed  Google Scholar 

  73. Khan AA, Parveen N, Mahaboob VS, Rajendraprasad A, Ravindraprakash HR, Venkateswarlu J, Rao P, Pande G, Narusu ML, Khaja MN, Pramila R, Habeeb A, Habibullah CM. Treatment of Crigler-Najjar Syndrome type 1 by hepatic progenitor cell transplantation: a simple procedure for management of hyperbilirubinemia. Transplant Proc. 2008;40(4):1148–50.

    Article  CAS  PubMed  Google Scholar 

  74. Khan AA, Parveen N, Mahaboob VS, Rajendraprasad A, Ravindraprakash HR, Venkateswarlu J, Rao P, Pande G, Narusu ML, Khaja MN, Pramila R, Habeeb A, Habibullah CM. Management of hyperbilirubinemia in biliary atresia by hepatic progenitor cell transplantation through hepatic artery: a case report. Transplant Proc. 2008;40(4):1153–5.

    Article  CAS  PubMed  Google Scholar 

  75. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83.

    Article  CAS  PubMed  Google Scholar 

  76. Guguen Guillouzo C, Campion JP, Brissot P, Glaise D, Launois B, Bourel M, Guillouzo A. High yield of preparation of isolated human adult hepatocytes by enzymatic perfusion of the liver. Cell Biol Int Rep. 1982;6:625–8.

    Article  CAS  PubMed  Google Scholar 

  77. Dorko K, Freeswick PD, Bartoli F, Cicalese L, Bardsley BA, Tzakis A, Nussler AK. A new technique for isolating and culturing human hepatocytes from whole or split livers not used for transplantation. Cell Transplant. 1994;3(5):387–95.

    CAS  PubMed  Google Scholar 

  78. Gridelli B, Vizzini G, Pietrosi G, Luca A, Spada M, Gruttadauria S, Cintorino D, Amico G, Chinnici C, Miki T, Schmelzer E, Conaldi PG, Triolo F, Gerlach JC. Efficient human fetal liver cell isolation protocol based on vascular perfusion for liver cell-based therapy and case report on cell transplantation. Liver Transpl. 2012;18(2):226–37.

    Article  PubMed  Google Scholar 

  79. Alexandrova K, Griesel C, Barthold M, Heuft HG, Ott M, Winkler M, Schrem H, Manns MP, Bredehorn T, Net M, Vidal MM, Kafert-Kasting S, Arseniev L. Large-scale isolation of human hepatocytes for therapeutic application. Cell Transplant. 2005;14(10):845–53.

    Article  PubMed  Google Scholar 

  80. Terry C, Mitry RR, Lehec SC, Muiesan P, Rela M, Heaton ND, Hughes RD, Dhawan A. The effects of cryopreservation on human hepatocytes obtained from different sources of liver tissue. Cell Transplant. 2005;14(8):585–94.

    Article  PubMed  Google Scholar 

  81. Hughes RD, Mitry RR, Dhawan A, Lehec SC, Girlanda R, Rela M, Heaton ND, Muiesan P. Isolation of hepatocytes from livers from non-heart-beating donors for cell transplantation. Liver Transpl. 2006;2(5):713–7.

    Article  Google Scholar 

  82. Hsu H-C, Matsuno N, Machida N, Enosawa S. Improved recovery of hepatocytes isolated from warm ischemic rat liver by citrate phosphate dextrose (CPD)-supplemented Euro-Collins solution. Cell Med. 2013 http://dx.doi.org/10.3727/215517913X666521

  83. Hsu H-C, Matsuno N, Tanaka R, Enosawa S. Improvement of hepatocyte recovery in rat liver tissue subject to one hour warm ischaemic injury by using citrate phosphate dextrose added to Euro-Collins perfusion solution. Transplant Proc. Transpl (2013). Proc, 45, 1700–1703.

    Google Scholar 

  84. Tamaki T, Kamada N, Wight DG, Pegg DE. Successful 48-hour preservation of the rat liver by continuous hypothermic perfusion with haemaccel-isotonic citrate solution. Transplantation. 1987;43(4):468–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Matsuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Matsuno, N., Enosawa, S. (2014). DCD for Liver Transplantation. In: Asano, T., Fukushima, N., Kenmochi, T., Matsuno, N. (eds) Marginal Donors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54484-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54484-5_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54483-8

  • Online ISBN: 978-4-431-54484-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics