Skip to main content

Macrophages in Pathophysiology of Endometriosis

  • Chapter
  • First Online:
Endometriosis
  • 2416 Accesses

Abstract

The mechanisms that sustain endometrial tissues at ectopic sites in patients with endometriosis are poorly understood. It is well established now that endometriosis is associated with changes in population and functions of various leukocytes, including macrophages. Macrophages are the most abundant cells found in the peritoneal fluid and are the consistent feature of endometriotic lesion. They infiltrate endometriotic lesions where they undergo alternative activation as a consequence of signals generated within the invaded tissue. However, instead of clearing endometrial cells from the peritoneal cavity and restoring local homeostasis, macrophages appear to enhance their survival and proliferation by secreting growth, remodelling and inflammatory factors which could contribute to the development of endometriosis as well as to the disease-associated chronic pelvic inflammation and symptoms. Thus, unveiling the molecular mechanisms that underlie macrophage dysfunctions is a critical area of research, which would lead to the development of novel medical treatments for endometriosis. In this chapter, we described how macrophages can play a critical role in the pathophysiology of endometriosis not only via their weakened phagocytic functions but also via other major mechanisms revealed to date.

*Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Cluster of differentiation

Cox-2:

Cyclooxygenase-2

DCs:

Dendritic cells

E2:

Oestrogen

FGF:

Fibroblast growth factor

ICAM-l:

Intercellular adhesion molecule-l

IL:

Interleukin

IFN-γ:

Interferon gamma

ISO-1:

((S,R) 3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic methyl ester

LFA-1:

Leukocyte function antigen-l

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemotactic protein-1

MIF:

Macrophage migration inhibitory factor

MMPs:

Matrix metalloproteinases

NF-κB:

Nuclear factor kappa B

NGF:

Nerve growth factor

NK:

Natural killer

PGE2:

Prostaglandin-E2

PGF2α:

Prostaglandin-F2α

PGs:

Prostaglandins

PlGF:

Placental growth factor

RANTES:

Regulated on activation, normal T cell expressed and secreted

StAR:

Steroidogenic acute regulatory protein

TGF:

Tumour growth factor

TIMPs:

Tissue inhibitors of MMPs

TNF-α:

Tumour necrosis factor-alpha

uNK:

Uterine natural killer

VEGF:

Vascular endothelial growth factor

References

  1. Dmowski WP, Steele RW, Baker GF. Deficient cellular immunity in endometriosis. Am J Obstet Gynecol. 1981;141(4):377–83.

    CAS  PubMed  Google Scholar 

  2. van Furth R, Raeburn JA, van Zwet TL. Characteristics of human mononuclear phagocytes. Blood. 1979;54(2):485–500.

    PubMed  Google Scholar 

  3. Haney AF, Muscato JJ, Weinberg JB. Peritoneal fluid cell populations in infertility patients. Fertil Steril. 1981;35(6):696–8.

    CAS  PubMed  Google Scholar 

  4. Dunselman GA, et al. Functional aspects of peritoneal macrophages in endometriosis of women. J Reprod Fertil. 1988;82(2):707–10.

    CAS  PubMed  Google Scholar 

  5. Halme J, et al. Increased activation of pelvic macrophages in infertile women with mild endometriosis. Am J Obstet Gynecol. 1983;145(3):333–7.

    CAS  PubMed  Google Scholar 

  6. Olive DL, Weinberg JB, Haney AF. Peritoneal macrophages and infertility: the association between cell number and pelvic pathology. Fertil Steril. 1985;44(6):772–7.

    CAS  PubMed  Google Scholar 

  7. Zeller JM, et al. Enhancement of human monocyte and peritoneal macrophage chemiluminescence activities in women with endometriosis. Am J Reprod Immunol Microbiol. 1987;13(3):78–82.

    CAS  PubMed  Google Scholar 

  8. Braun DP, et al. Monocyte-mediated enhancement of endometrial cell proliferation in women with endometriosis. Fertil Steril. 1994;61(1):78–84.

    CAS  PubMed  Google Scholar 

  9. Mantovani B, Rabinovitch M, Nussenzweig V. Phagocytosis of immune complexes by macrophages. Different roles of the macrophage receptor sites for complement (C3) and for immunoglobulin (IgG). J Exp Med. 1972;135(4):780–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Melin A, et al. Endometriosis and the risk of cancer with special emphasis on ovarian cancer. Hum Reprod. 2006;21(5):1237–42.

    CAS  PubMed  Google Scholar 

  11. Geissmann F, et al. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.

    CAS  PubMed  Google Scholar 

  13. Erwig LP. Macrophages and hypoxia in human chronic kidney disease. Kidney Int. 2008;74(4):405–6.

    CAS  PubMed  Google Scholar 

  14. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    CAS  PubMed  Google Scholar 

  15. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Hirata T, et al. Development of an experimental model of endometriosis using mice that ubiquitously express green fluorescent protein. Hum Reprod. 2005;20(8):2092–6.

    CAS  PubMed  Google Scholar 

  17. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    CAS  PubMed  Google Scholar 

  18. Houser BL, et al. Two unique human decidual macrophage populations. J Immunol. 2011;186(4):2633–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Swiersz LM. Role of endometriosis in cancer and tumor development. Ann N Y Acad Sci. 2002;955:281–92. discussion 293–5; 396–406.

    PubMed  Google Scholar 

  20. Thiruchelvam U, et al. The importance of the macrophage within the human endometrium. J Leukoc Biol. 2013;93(2):217–25.

    CAS  PubMed  Google Scholar 

  21. Evans J, Salamonsen LA. Inflammation, leukocytes and menstruation. Rev Endocr Metab Disord. 2012;13(4):277–88.

    CAS  PubMed  Google Scholar 

  22. Tran LV, et al. Macrophages and nerve fibres in peritoneal endometriosis. Hum Reprod. 2009;24(4):835–41.

    CAS  PubMed  Google Scholar 

  23. Oral E, Olive DL, Arici A. The peritoneal environment in endometriosis. Hum Reprod Update. 1996;2(5):385–98.

    CAS  PubMed  Google Scholar 

  24. Halme J, et al. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol. 1984;64(2):151–4.

    CAS  PubMed  Google Scholar 

  25. Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3(2):93–110.43.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Wu MH, et al. Prostaglandin E2: the master of endometriosis? Exp Biol Med (Maywood). 2010;235(6):668–77.

    CAS  Google Scholar 

  27. Muscato JJ, Haney AF, Weinberg JB. Sperm phagocytosis by human peritoneal macrophages: a possible cause of infertility in endometriosis. Am J Obstet Gynecol. 1982;144(5):503–10.

    CAS  PubMed  Google Scholar 

  28. Halme J, Becker S, Haskill S. Altered maturation and function of peritoneal macrophages: possible role in pathogenesis of endometriosis. Am J Obstet Gynecol. 1987;156(4):783–9.

    CAS  PubMed  Google Scholar 

  29. Braun DP, et al. Relationship between apoptosis and the number of macrophages in eutopic endometrium from women with and without endometriosis. Fertil Steril. 2002;78(4):830–5.

    PubMed  Google Scholar 

  30. Braun DP, et al. Spontaneous and induced synthesis of cytokines by peripheral blood monocytes in patients with endometriosis. Fertil Steril. 1996;65(6):1125–9.

    CAS  PubMed  Google Scholar 

  31. Carli C, et al. Direct effect of macrophage migration inhibitory factor on sperm function: possible involvement in endometriosis-associated infertility. Fertil Steril. 2007;88(4 Suppl):1240–7.

    CAS  PubMed  Google Scholar 

  32. Jha P, et al. In vitro sperm phagocytosis by human peritoneal macrophages in endometriosis-associated infertility. Am J Reprod Immunol. 1996;36(4):235–7.

    CAS  PubMed  Google Scholar 

  33. Koninckx PR, Kennedy SH, Barlow DH. Endometriotic disease: the role of peritoneal fluid. Hum Reprod Update. 1998;4(5):741–51.

    CAS  PubMed  Google Scholar 

  34. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75(1):1–10.

    CAS  PubMed  Google Scholar 

  35. Seli E, Arici A. Endometriosis: interaction of immune and endocrine systems. Semin Reprod Med. 2003;21(2):135–44.

    CAS  PubMed  Google Scholar 

  36. Ulukus M, Cakmak H, Arici A. The role of endometrium in endometriosis. J Soc Gynecol Investig. 2006;13(7):467–76.

    CAS  PubMed  Google Scholar 

  37. Wu MH, et al. Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am J Pathol. 2005;167(4):1061–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Chuang PC, et al. Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. J Pathol. 2009;219(2):232–41.

    CAS  PubMed  Google Scholar 

  39. Chuang PC, et al. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. Am J Pathol. 2010;176(2):850–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–99.

    PubMed  Google Scholar 

  41. Akoum A, et al. Secretion of monocyte chemotactic protein-1 by cytokine-stimulated endometrial cells of women with endometriosis. Le groupe d’investigation en gynecologie. Fertil Steril. 1995;63(2):322–8.

    CAS  PubMed  Google Scholar 

  42. Akoum A, et al. Secretion of interleukin-6 by human endometriotic cells and regulation by proinflammatory cytokines and sex steroids. Hum Reprod. 1996;11(10):2269–75.

    CAS  PubMed  Google Scholar 

  43. Kats R, Metz CN, Akoum A. Macrophage migration inhibitory factor is markedly expressed in active and early-stage endometriotic lesions. J Clin Endocrinol Metab. 2002;87(2):883–9.

    CAS  PubMed  Google Scholar 

  44. Morin M, et al. Elevated levels of macrophage migration inhibitory factor in the peripheral blood of women with endometriosis. Fertil Steril. 2005;83(4):865–72.

    CAS  PubMed  Google Scholar 

  45. Akoum A, et al. Imbalance in the peritoneal levels of interleukin 1 and its decoy inhibitory receptor type II in endometriosis women with infertility and pelvic pain. Fertil Steril. 2008;89(6):1618–24.

    CAS  PubMed  Google Scholar 

  46. Herrmann Lavoie C, et al. Interleukin-1 stimulates macrophage migration inhibitory factor secretion in ectopic endometrial cells of women with endometriosis. Am J Reprod Immunol. 2007;58(6):505–13.

    PubMed  Google Scholar 

  47. Koch AE, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 1992;258(5089):1798–801.

    CAS  PubMed  Google Scholar 

  48. Yoshimura T, et al. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol. 1987;139(3):788–93.

    CAS  PubMed  Google Scholar 

  49. Arici A, et al. Interleukin-8 induces proliferation of endometrial stromal cells: a potential autocrine growth factor. J Clin Endocrinol Metab. 1998;83(4):1201–5.

    CAS  PubMed  Google Scholar 

  50. Velasco G, et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem. 1999;274(8):4570–6.

    CAS  PubMed  Google Scholar 

  51. Jolicoeur C, et al. Increased expression of monocyte chemotactic protein-1 in the endometrium of women with endometriosis. Am J Pathol. 1998;152(1):125–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Akoum A, et al. Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil Steril. 2002;77(5):989–94.

    PubMed  Google Scholar 

  53. Akoum A, et al. Elevated concentration and biologic activity of monocyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis. Fertil Steril. 1996;66(1):17–23.

    CAS  PubMed  Google Scholar 

  54. Arici A, et al. Monocyte chemotactic protein-1 concentration in peritoneal fluid of women with endometriosis and its modulation of expression in mesothelial cells. Fertil Steril. 1997;67(6):1065–72.

    CAS  PubMed  Google Scholar 

  55. Saji H, et al. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer. 2001;92(5):1085–91.

    CAS  PubMed  Google Scholar 

  56. Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267(2):271–85.

    CAS  PubMed  Google Scholar 

  57. Salcedo R, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96(1):34–40.

    CAS  PubMed  Google Scholar 

  58. Goede V, et al. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer. 1999;82(5):765–70.

    CAS  PubMed  Google Scholar 

  59. Kuroda T, et al. Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res. 2005;11(21):7629–36.

    CAS  PubMed  Google Scholar 

  60. Hornung D, et al. Chemokine bioactivity of RANTES in endometriotic and normal endometrial stromal cells and peritoneal fluid. Mol Hum Reprod. 2001;7(2):163–8.

    CAS  PubMed  Google Scholar 

  61. Lebovic DI, et al. IL-1beta induction of RANTES (regulated upon activation, normal T cell expressed and secreted) chemokine gene expression in endometriotic stromal cells depends on a nuclear factor-kappaB site in the proximal promoter. J Clin Endocrinol Metab. 2001;86(10):4759–64.

    CAS  PubMed  Google Scholar 

  62. Akoum A, Lemay A, Maheux R. Estradiol and interleukin-1beta exert a synergistic stimulatory effect on the expression of the chemokine regulated upon activation, normal T cell expressed, and secreted in endometriotic cells. J Clin Endocrinol Metab. 2002;87(12):5785–92.

    CAS  PubMed  Google Scholar 

  63. Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966;153(3731):80–2.

    CAS  PubMed  Google Scholar 

  64. David JR. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A. 1966;56(1):72–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. de Jong YP, et al. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol. 2001;2(11):1061–6.

    PubMed  Google Scholar 

  66. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3(10):791–800.

    CAS  PubMed  Google Scholar 

  67. Calandra T, et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377(6544):68–71.

    CAS  PubMed  Google Scholar 

  68. Calandra T, Bucala R. Macrophage migration inhibitory factor (MIF): a glucocorticoid counter-regulator within the immune system. Crit Rev Immunol. 1997;17(1):77–88.

    CAS  PubMed  Google Scholar 

  69. Donnelly SC, Bucala R. Macrophage migration inhibitory factor: a regulator of glucocorticoid activity with a critical role in inflammatory disease. Mol Med Today. 1997;3(11):502–7.

    CAS  PubMed  Google Scholar 

  70. Bucala R, Donnelly SC. Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity. 2007;26(3):281–5.

    CAS  PubMed  Google Scholar 

  71. Akoum A, et al. Macrophage migration inhibitory factor expression in the intrauterine endometrium of women with endometriosis varies with disease stage, infertility status, and pelvic pain. Fertil Steril. 2006;85(5):1379–85.

    PubMed  Google Scholar 

  72. Mahutte NG, et al. Elevations in peritoneal fluid macrophage migration inhibitory factor are independent of the depth of invasion or stage of endometriosis. Fertil Steril. 2004;82(1):97–101.

    CAS  PubMed  Google Scholar 

  73. Lin W, et al. Expression of macrophage migration inhibitory factor in human endometriosis: relation to disease stage, menstrual cycle and infertility. J Obstet Gynaecol Res. 2010;36(2):344–51.

    CAS  PubMed  Google Scholar 

  74. Carli C, et al. Up-regulation of cyclooxygenase-2 expression and prostaglandin E2 production in human endometriotic cells by macrophage migration inhibitory factor: involvement of novel kinase signaling pathways. Endocrinology. 2009;150(7):3128–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Veillat V, et al. Involvement of nuclear factor-kappaB in macrophage migration inhibitory factor gene transcription up-regulation induced by interleukin-1 beta in ectopic endometrial cells. Fertil Steril. 2009;91(5 Suppl):2148–56.

    CAS  PubMed  Google Scholar 

  76. Veillat V, et al. Macrophage migration inhibitory factor is involved in a positive feedback loop increasing aromatase expression in endometriosis. Am J Pathol. 2012;181(3):917–27.

    CAS  PubMed  Google Scholar 

  77. Veillat V, et al. Macrophage migration inhibitory factor elicits an angiogenic phenotype in human ectopic endometrial cells and triggers the production of major angiogenic factors via CD44, CD74, and MAPK signaling pathways. J Clin Endocrinol Metab. 2010;95(12):E403–12.

    CAS  PubMed  Google Scholar 

  78. Gazvani R, Templeton A. Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction. 2002;123(2):217–26.

    CAS  PubMed  Google Scholar 

  79. Xie K, et al. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev. 2004;15(5):297–324.

    CAS  PubMed  Google Scholar 

  80. McLaren J, et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. McLaren J. Vascular endothelial growth factor and endometriotic angiogenesis. Hum Reprod Update. 2000;6(1):45–55.

    CAS  PubMed  Google Scholar 

  82. Cakmak H, et al. Immune-endocrine interactions in endometriosis. Front Biosci (Elite Ed). 2009;1:429–43.

    Google Scholar 

  83. Gonzalez-Ramos R, et al. Involvement of the nuclear factor-kappaB pathway in the pathogenesis of endometriosis. Fertil Steril. 2010;94(6):1985–94.

    CAS  PubMed  Google Scholar 

  84. Langenbach R, et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 1995;83(3):483–92.

    CAS  PubMed  Google Scholar 

  85. Pellegrini C, et al. The expression of estrogen receptors as well as GREB1, c-MYC, and cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil Steril. 2012;98(5):1200–8.

    CAS  PubMed  Google Scholar 

  86. Shweiki D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.

    CAS  PubMed  Google Scholar 

  87. Groothuis PG, et al. Vascular development in endometriosis. Angiogenesis. 2005;8(2):147–56.

    CAS  PubMed  Google Scholar 

  88. Wang GL, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Wu MH, et al. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am J Pathol. 2007;170(2):590–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Wu MH, et al. Endometriosis: disease pathophysiology and the role of prostaglandins. Expert Rev Mol Med. 2007;9(2):1–20.

    PubMed  Google Scholar 

  91. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and −2. J Biol Chem. 1996;271(52):33157–60.

    CAS  PubMed  Google Scholar 

  92. Wu MH, et al. Distinct mechanisms regulate cyclooxygenase-1 and -2 in peritoneal macrophages of women with and without endometriosis. Mol Hum Reprod. 2002;8(12):1103–10.

    CAS  PubMed  Google Scholar 

  93. Christenson LK, et al. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene. J Biol Chem. 1999;274(37):26591–8.

    CAS  PubMed  Google Scholar 

  94. Haining RE, et al. Epidermal growth factor in human endometrium: proliferative effects in culture and immunocytochemical localization in normal and endometriotic tissues. Hum Reprod. 1991;6(9):1200–5.

    CAS  PubMed  Google Scholar 

  95. Khan IM, Palmer EA, Archer CW. Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1. Osteoarthritis Cartilage. 2010;18(2):208–19.

    CAS  PubMed  Google Scholar 

  96. Sun HS, et al. Transactivation of steroidogenic acute regulatory protein in human endometriotic stromal cells is mediated by the prostaglandin EP2 receptor. Endocrinology. 2003;144(9):3934–42.

    CAS  PubMed  Google Scholar 

  97. Wing LY, et al. Expression and mitogenic effect of fibroblast growth factor-9 in human endometriotic implant is regulated by aberrant production of estrogen. J Clin Endocrinol Metab. 2003;88(11):5547–54.

    CAS  PubMed  Google Scholar 

  98. Jones MK, et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med. 1999;5(12):1418–23.

    CAS  PubMed  Google Scholar 

  99. Williams CS, et al. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest. 2000;105(11):1589–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Haney AF. Endometriosis, macrophages, and adhesions. Prog Clin Biol Res. 1993;381:19–44.

    CAS  PubMed  Google Scholar 

  101. Burns WN, Schenken RS. Pathophysiology of endometriosis-associated infertility. Clin Obstet Gynecol. 1999;42(3):586–610.

    CAS  PubMed  Google Scholar 

  102. Arumugam K, Yip YC. De novo formation of adhesions in endometriosis: the role of iron and free radical reactions. Fertil Steril. 1995;64(1):62–4.

    CAS  PubMed  Google Scholar 

  103. Oner-Iyidogan Y, et al. Indices of oxidative stress in eutopic and ectopic endometria of women with endometriosis. Gynecol Obstet Invest. 2004;57(4):214–7.

    PubMed  Google Scholar 

  104. Shanti A, et al. Autoantibodies to markers of oxidative stress are elevated in women with endometriosis. Fertil Steril. 1999;71(6):1115–8.

    CAS  PubMed  Google Scholar 

  105. Maathuis JB, Aitken RJ. Protein patterns of human uterine flushings collected at various stages of the menstrual cycle. J Reprod Fertil. 1978;53(2):343–8.

    CAS  PubMed  Google Scholar 

  106. McCubrey JA, Franklin RA. Reactive oxygen intermediates and signaling through kinase pathways. Antioxid Redox Signal. 2006;8(9–10):1745–8.

    CAS  PubMed  Google Scholar 

  107. Ishikawa H, et al. CCAAT/enhancer binding protein beta regulates aromatase expression via multiple and novel cis-regulatory sequences in uterine leiomyoma. J Clin Endocrinol Metab. 2008;93(3):981–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Kats R, et al. Cycle-dependent expression of macrophage migration inhibitory factor in the human endometrium. Hum Reprod. 2005;20(12):3518–25.

    CAS  PubMed  Google Scholar 

  109. Hashimoto T, et al. VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development. 2006;133(11):2201–10.

    CAS  PubMed  Google Scholar 

  110. Wittko IM, et al. VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci. 2009;29(27):8704–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Odagiri K, et al. Smooth muscle metaplasia and innervation in interstitium of endometriotic lesions related to pain. Fertil Steril. 2009;92(5):1525–31.

    PubMed  Google Scholar 

  113. Lee JL, et al. Cyclooxygenases in the skin: pharmacological and toxicological implications. Toxicol Appl Pharmacol. 2003;192(3):294–306.

    CAS  PubMed  Google Scholar 

  114. Cabral GA. Lipids as bioeffectors in the immune system. Life Sci. 2005;77(14):1699–710.

    CAS  PubMed  Google Scholar 

  115. Koopman LA, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003;198(8):1201–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol. 2010;63(6):460–71.

    CAS  PubMed  Google Scholar 

  117. Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci. 2010;17(3):209–18.

    CAS  PubMed  Google Scholar 

  118. Abrahams VM, et al. Macrophages and apoptotic cell clearance during pregnancy. Am J Reprod Immunol. 2004;51(4):275–82.

    PubMed  Google Scholar 

  119. Rico-Rosillo MG, Vega-Robledo GB. Immunological mechanisms involved in pregnancy. Ginecol Obstet Mex. 2012;80(5):332–40.

    PubMed  Google Scholar 

  120. Heikkinen J, et al. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol. 2003;131(3):498–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Co EC, et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol Reprod. 2013;88(6):155.

    PubMed Central  PubMed  Google Scholar 

  122. Hanna J, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12(9):1065–74.

    CAS  PubMed  Google Scholar 

  123. Krikun G. Endometriosis, angiogenesis and tissue factor. Scientifica (Cario). 2012;2012:306830.

    Google Scholar 

  124. Laschke MW, Giebels C, Menger MD. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update. 2011;17(5):628–36.

    CAS  PubMed  Google Scholar 

  125. Su MT, Lin SH, Chen YC. Genetic association studies of angiogenesis- and vasoconstriction-related genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Hum Reprod Update. 2011;17(6):803–12.

    CAS  PubMed  Google Scholar 

  126. Romero R, et al. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007;65(12 Pt 2):S194–202.

    PubMed  Google Scholar 

  127. Augoulea A, et al. Pathogenesis of endometriosis: the role of genetics, inflammation and oxidative stress. Arch Gynecol Obstet. 2012;286(1):99–103.

    CAS  PubMed  Google Scholar 

  128. Christiansen OB. Reproductive immunology. Mol Immunol. 2013;55(1):8–15.

    CAS  PubMed  Google Scholar 

  129. Anton L, et al. Lipopolysaccharide induces cytokine production and decreases extravillous trophoblast invasion through a mitogen-activated protein kinase-mediated pathway: possible mechanisms of first trimester placental dysfunction. Hum Reprod. 2012;27(1):61–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Agarwal A, et al. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    PubMed Central  PubMed  Google Scholar 

  131. Osborn BH, et al. Inducible nitric oxide synthase expression by peritoneal macrophages in endometriosis-associated infertility. Fertil Steril. 2002;77(1):46–51.

    PubMed  Google Scholar 

  132. Lambrinoudaki IV, et al. Measurable serum markers of oxidative stress response in women with endometriosis. Fertil Steril. 2009;91(1):46–50.

    CAS  PubMed  Google Scholar 

  133. Mier-Cabrera J, et al. Quantitative and qualitative peritoneal immune profiles, T-cell apoptosis and oxidative stress-associated characteristics in women with minimal and mild endometriosis. BJOG. 2011;118(1):6–16.

    CAS  PubMed  Google Scholar 

  134. Szczepanska M, et al. Oxidative stress may be a piece in the endometriosis puzzle. Fertil Steril. 2003;79(6):1288–93.

    PubMed  Google Scholar 

  135. Sobinoff AP, et al. Scrambled and fried: cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress. Toxicol Appl Pharmacol. 2013;271(2):156–67.

    CAS  PubMed  Google Scholar 

  136. Lee TH, et al. The association between microenvironmental reactive oxygen species and embryo development in assisted reproduction technology cycles. Reprod Sci. 2012;19(7):725–32.

    PubMed  Google Scholar 

  137. Karuputhula NB, et al. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013;59(2):91–8.

    CAS  PubMed  Google Scholar 

  138. Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol. 1998;153(4):1249–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Shen GH, et al. Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma. Br J Cancer. 2000;83(2):196–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Nezhat F, et al. Comparative immunohistochemical studies of bcl-2 and p53 proteins in benign and malignant ovarian endometriotic cysts. Cancer. 2002;94(11):2935–40.

    CAS  PubMed  Google Scholar 

  141. Wang Z, et al. Tamoxifen regulates human telomerase reverse transcriptase (hTERT) gene expression differently in breast and endometrial cancer cells. Oncogene. 2002;21(22):3517–24.

    CAS  PubMed  Google Scholar 

  142. Del Carmen MG, et al. Endometriosis-associated ovarian carcinoma: differential expression of vascular endothelial growth factor and estrogen/progesterone receptors. Cancer. 2003;98(8):1658–63.

    PubMed  Google Scholar 

  143. Somigliana E, et al. Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Hum Reprod. 1999;14(12):2944–50.

    CAS  PubMed  Google Scholar 

  144. Zamah NM, et al. Transplantation of normal and ectopic human endometrial tissue into athymic nude mice. Am J Obstet Gynecol. 1984;149(6):591–7.

    CAS  PubMed  Google Scholar 

  145. Becker CM, et al. A novel noninvasive model of endometriosis for monitoring the efficacy of antiangiogenic therapy. Am J Pathol. 2006;168(6):2074–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Bacci M, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Capobianco A, et al. Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. Am J Pathol. 2011;179(5):2651–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Wu MH, et al. Suppression of annexin A2 by prostaglandin E(2) impairs phagocytic ability of peritoneal macrophages in women with endometriosis. Hum Reprod. 2013;28(4):1045–53.

    CAS  PubMed  Google Scholar 

  149. Khoufache K, et al. Macrophage migration inhibitory factor antagonist blocks the development of endometriosis in vivo. PLoS One. 2012;7(5):e37264.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Taylor 3rd JA, et al. Null mutation for macrophage migration inhibitory factor (MIF) is associated with less aggressive bladder cancer in mice. BMC Cancer. 2007;7:135.

    PubMed Central  PubMed  Google Scholar 

  151. Nishihira J, et al. Macrophage migration inhibitory factor (MIF): its potential role in tumor growth and tumor-associated angiogenesis. Ann N Y Acad Sci. 2003;995:171–82.

    CAS  PubMed  Google Scholar 

  152. Chesney J, et al. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med. 1999;5(3):181–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Bondza PK, Metz CN, Akoum A. Postgestational effects of macrophage migration inhibitory factor on embryonic implantation in mice. Fertil Steril. 2008;90(4 Suppl):1433–43.

    CAS  PubMed  Google Scholar 

  154. Bach JP, et al. Role of MIF in inflammation and tumorigenesis. Oncology. 2008;75(3–4):127–33.

    CAS  PubMed  Google Scholar 

  155. Al-Abed Y, et al. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem. 2005;280(44):36541–4.

    CAS  PubMed  Google Scholar 

  156. Matsubayashi H, et al. Leukocyte subpopulation changes in rats with autotransplanted endometrium and the effect of danazol. Am J Reprod Immunol. 1995;33(4):301–14.

    CAS  PubMed  Google Scholar 

  157. Uchiide I, Ihara T, Sugamata M. Pathological evaluation of the rat endometriosis model. Fertil Steril. 2002;78(4):782–6.

    PubMed  Google Scholar 

  158. Machado DE, et al. A selective cyclooxygenase-2 inhibitor suppresses the growth of endometriosis with an antiangiogenic effect in a rat model. Fertil Steril. 2010;93(8):2674–9.

    CAS  PubMed  Google Scholar 

  159. Haber E, et al. Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum Reprod. 2009;24(2):398–407.

    CAS  PubMed  Google Scholar 

  160. Grummer R. Animal models in endometriosis research. Hum Reprod Update. 2006;12(5):641–9.

    PubMed  Google Scholar 

  161. Smith KA, et al. Alternative activation of macrophages in rhesus macaques (Macaca mulatta) with endometriosis. Comp Med. 2012;62(4):303–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Ricci AG, et al. Effect of vascular endothelial growth factor inhibition on endometrial implant development in a murine model of endometriosis. Reprod Sci. 2011;18(7):614–22.

    CAS  PubMed  Google Scholar 

  163. Soares SR, et al. Pharmacologic therapies in endometriosis: a systematic review. Fertil Steril. 2012;98(3):529–55.

    CAS  PubMed  Google Scholar 

  164. Cakmak H, et al. Statins inhibit monocyte chemotactic protein 1 expression in endometriosis. Reprod Sci. 2012;19(6):572–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Allavena P, et al. Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells. Cancer Res. 1990;50(22):7318–23.

    CAS  PubMed  Google Scholar 

  166. Duluc D, et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer. 2009;125(2):367–73.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study is supported by CIHR grants MOP 93716, 120769 and 123259 to Pr. Ali Akoum, Chercheur National, FRQ-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Akoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Ahmad, S.F., Michaud, N., Rakhila, H., Akoum, A. (2014). Macrophages in Pathophysiology of Endometriosis. In: Harada, T. (eds) Endometriosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54421-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54421-0_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54420-3

  • Online ISBN: 978-4-431-54421-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics