Skip to main content

Role of Stem Cells in the Pathogenesis of Endometriosis

  • Chapter
  • First Online:
Endometriosis

Abstract

Endometriosis can be defined as a benign estrogen-dependent disorder in which endometrium-like tissues reside outside of the uterine cavity. Studies now indicate that multiple genetic and epigenetic changes (reminiscent of neoplastic processes) are involved in the pathophysiology of endometriosis. Given the molecular similarities between endometriosis and cancer, it is reasonable to apply the “cancer stem cell model” concept to the pathogenesis of endometriosis. In this article, I review and discuss “the stem cell model for endometriosis” in which endometriosis originates from endometrial stem/progenitor cells within eutopic and ectopic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–99.

    Article  PubMed  Google Scholar 

  2. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–79.

    Article  CAS  PubMed  Google Scholar 

  3. Jubanyik KJ, Comite F. Extrapelvic endometriosis. Obstet Gynecol Clin North Am. 1997;24(2):411–40.

    Article  CAS  PubMed  Google Scholar 

  4. Robboy SJ, Anderson MC, Russell P. Endometriosis. In: Robboy SJ, Anderson MC, Russell P, editors. Pathology of the female reproductive tract. London: Churchill Livingstone; 2002. p. 445–73.

    Google Scholar 

  5. Anaf V, Simon P, Fayt I, Noel J. Smooth muscles are frequent components of endometriotic lesions. Hum Reprod. 2000;15(4):767–71.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor RN, Yu J, Torres PB, Schickedanz AC, Park JK, Mueller MD, Sidell N. Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci. 2009;16(2):140–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Medina MG, Lebovic DI. Endometriosis-associated nerve fibers and pain. Acta Obstet Gynecol Scand. 2009;88(9):968–75.

    Article  PubMed  Google Scholar 

  8. Varma R, Rollason T, Gupta JK, Maher ER. Endometriosis and the neoplastic process. Reproduction. 2004;127(3):293–304. doi:10.1530/rep.1.00020.

    Article  CAS  PubMed  Google Scholar 

  9. Jimbo H, Hitomi Y, Yoshikawa H, Yano T, Momoeda M, Sakamoto A, Tsutsumi O, Taketani Y, Esumi H. Evidence for monoclonal expansion of epithelial cells in ovarian endometrial cysts. Am J Pathol. 1997;150(4):1173–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Tamura M, Fukaya T, Murakami T, Uehara S, Yajima A. Analysis of clonality in human endometriotic cysts based on evaluation of X chromosome inactivation in archival formalin-fixed, paraffin-embedded tissue. Lab Invest. 1998;78(2):213–8.

    CAS  PubMed  Google Scholar 

  11. Wu Y, Basir Z, Kajdacsy-Balla A, Strawn E, Macias V, Montgomery K, Guo SW. Resolution of clonal origins for endometriotic lesions using laser capture microdissection and the human androgen receptor (HUMARA) assay. Fertil Steril. 2003;79 Suppl 1:710–7.

    Article  PubMed  Google Scholar 

  12. Nabeshima H, Murakami T, Yoshinaga K, Sato K, Terada Y, Okamura K. Analysis of the clonality of ectopic glands in peritoneal endometriosis using laser microdissection. Fertil Steril. 2003;80(5):1144–50.

    Article  PubMed  Google Scholar 

  13. Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A. Invasiveness of endometriotic cells in vitro. Lancet. 1995;346(8988):1463–4.

    Article  CAS  PubMed  Google Scholar 

  14. Podberezin M, Wen J, Chang CC. Cancer stem cells: a review of potential clinical applications. Arch Pathol Lab Med. 2013;137(8):1111–6. doi:10.5858/arpa.2012-0494-RA.

    Article  PubMed  Google Scholar 

  15. Sugihara E, Saya H. Complexity of cancer stem cells. Int J Cancer. 2013;132(6):1249–59. doi:10.1002/ijc.27961.

    Article  CAS  PubMed  Google Scholar 

  16. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008;1127:106–15.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16(11):818–34.

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama T, Yoshimura Y. Stem cell theory for the pathogenesis of endometriosis. Front Biosci. 2012;E4:2754–63.

    Article  Google Scholar 

  19. Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010;140(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  20. Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22(5–6):396–403. doi:10.1016/j.semcancer.2012.04.001.

    Article  CAS  PubMed  Google Scholar 

  21. Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS. Cancer stem cells and their role in metastasis. Pharmacol Ther. 2013;138(2):285–93. doi:10.1016/j.pharmthera.2013.01.014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8. doi:10.1172/JCI39104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Uchida H, Maruyama T, Nishikawa-Uchida S, Oda H, Miyazaki K, Yamasaki A, Yoshimura Y. Studies using an in vitro model show evidence of involvement of epithelial-mesenchymal transition of human endometrial epithelial cells in human embryo implantation. J Biol Chem. 2012;287(7):4441–50. doi:10.1074/jbc.M111.286138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 2005;11(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  25. Matsuzaki S, Darcha C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod. 2012;27(3):712–21. doi:10.1093/humrep/der442.

    Article  CAS  PubMed  Google Scholar 

  26. Demir AY, Demol H, Puype M, de Goeij AF, Dunselman GA, Herrler A, Evers JL, Vandekerckhove J, Groothuis PG. Proteome analysis of human mesothelial cells during epithelial to mesenchymal transitions induced by shed menstrual effluent. Proteomics. 2004;4(9):2608–23. doi:10.1002/pmic.200300827.

    Article  CAS  PubMed  Google Scholar 

  27. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    Article  CAS  PubMed  Google Scholar 

  28. Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24(1):3–12.

    Article  PubMed  Google Scholar 

  29. Kato K, Takao T, Kuboyama A, Tanaka Y, Ohgami T, Yamaguchi S, Adachi S, Yoneda T, Ueoka Y, Kato K, Hayashi S, Asanoma K, Wake N. Endometrial cancer side-population cells show prominent migration and have a potential to differentiate into the mesenchymal cell lineage. Am J Pathol. 2010;176(1):381–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Forte A, Schettino MT, Finicelli M, Cipollaro M, Colacurci N, Cobellis L, Galderisi U. Expression pattern of stemness-related genes in human endometrial and endometriotic tissues. Mol Med. 2009;15(11–12):392–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Chang JH, Au HK, Lee WC, Chi CC, Ling TY, Wang LM, Kao SH, Huang YH, Tzeng CR. Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertil Steril. 2013;99(5):1332–9.e5.

    Article  CAS  PubMed  Google Scholar 

  32. Matsuzaki S, Darcha C. Adenosine triphosphate-binding cassette transporter G2 expression in endometriosis and in endometrium from patients with and without endometriosis. Fertil Steril. 2012;98(6):1512–20.e3.

    Article  CAS  PubMed  Google Scholar 

  33. Silveira CG, Abrao MS, Dias Jr JA, Coudry RA, Soares FA, Drigo SA, Domingues MA, Rogatto SR. Common chromosomal imbalances and stemness-related protein expression markers in endometriotic lesions from different anatomical sites: the potential role of stem cells. Hum Reprod. 2012;27(11):3187–97. doi:10.1093/humrep/des282.

    Article  CAS  PubMed  Google Scholar 

  34. Sterneckert J, Hoing S, Scholer HR. Concise review: Oct4 and more: the reprogramming expressway. Stem Cells. 2012;30(1):15–21. doi:10.1002/stem.765.

    Article  CAS  PubMed  Google Scholar 

  35. Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006;46:381–410. doi:10.1146/annurev.pharmtox.46.120604.141238.

    Article  CAS  PubMed  Google Scholar 

  36. Mayr D, Amann G, Siefert C, Diebold J, Anderegg B. Does endometriosis really have premalignant potential? A clonal analysis of laser-microdissected tissue. FASEB J. 2003;17(6):693–5.

    CAS  PubMed  Google Scholar 

  37. Chan RW, Ng EH, Yeung WS. Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. Am J Pathol. 2011;178(6):2832–44. doi:10.1016/j.ajpath.2011.02.025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–96.

    Article  CAS  PubMed  Google Scholar 

  39. Seli E, Berkkanoglu M, Arici A. Pathogenesis of endometriosis. Obstet Gynecol Clin North Am. 2003;30(1):41–61.

    Article  PubMed  Google Scholar 

  40. Nap AW, Groothuis PG, Demir AY, Evers JL, Dunselman GA. Pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):233–44.

    Article  PubMed  Google Scholar 

  41. Brosens I, Benagiano G. Is neonatal uterine bleeding involved in the pathogenesis of endometriosis as a source of stem cells? Fertil Steril. 2013. doi:10.1016/j.fertnstert.2013.04.046.

    PubMed  Google Scholar 

  42. Brosens I, Puttemans P, Benagiano G. Endometriosis: a life cycle approach? Am J Obstet Gynecol. 2013. doi:10.1016/j.ajog.2013.03.009.

    PubMed  Google Scholar 

  43. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  44. Ikoma T, Kyo S, Maida Y, Ozaki S, Takakura M, Nakao S, Inoue M. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol. 2009;201(e601):8.

    Google Scholar 

  45. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082–6.

    Article  CAS  PubMed  Google Scholar 

  46. Bratincsak A, Brownstein MJ, Cassiani-Ingoni R, Pastorino S, Szalayova I, Toth ZE, Key S, Nemeth K, Pickel J, Mezey E. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells. 2007;25(11):2820–6.

    Article  CAS  PubMed  Google Scholar 

  47. Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22(5):1214–23.

    Article  CAS  PubMed  Google Scholar 

  48. Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T. Side population cells contribute to the genesis of human endometrium. Fertil Steril. 2008;90(4 Suppl):1528–37.

    Article  PubMed  Google Scholar 

  49. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, Oda H, Uchida H, Asada H, Ito M, Yoshimura Y, Maruyama T, Okano H. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One. 2010;5(4):e10387.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martinez-Conejero JA, Galan A, Martinez-Romero A, Martinez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simon C. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5(6):e10964.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Miyazaki K, Maruyama T, Masuda H, Yamasaki A, Uchida S, Oda H, Uchida H, Yoshimura Y. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay. PLoS One. 2012;7(12):e50749.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343–53.

    Article  CAS  PubMed  Google Scholar 

  53. Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009;13(1):87–102.

    Article  PubMed  Google Scholar 

  54. Deane JA, Gualano RC, Gargett CE. Regenerating endometrium from stem/progenitor cells: is it abnormal in endometriosis, Asherman’s syndrome and infertility? Curr Opin Obstet Gynecol. 2013;25(3):193–200. doi:10.1097/GCO.0b013e32836024e7.

    Article  PubMed  Google Scholar 

  55. Cervello I, Mas A, Gil-Sanchis C, Simon C. Somatic stem cells in the human endometrium. Semin Reprod Med. 2013;31(1):69–76. doi:10.1055/s-0032-1331800.

    Article  PubMed  Google Scholar 

  56. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903–11.

    Article  CAS  PubMed  Google Scholar 

  57. Schwab KE, Hutchinson P, Gargett CE. Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod. 2008;23(4):934–43.

    Article  CAS  PubMed  Google Scholar 

  58. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80(6):1136–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Masuda H, Anwar SS, Buhring HJ, Rao JR, Gargett CE. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012;21(10):2201–14. doi:10.3727/096368911X637362.

    Article  PubMed  Google Scholar 

  60. Masuda H, Maruyama T, Hiratsu E, Yamane J, Iwanami A, Nagashima T, Ono M, Miyoshi H, Okano HJ, Ito M, Tamaoki N, Nomura T, Okano H, Matsuzaki Y, Yoshimura Y. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/γc null immunodeficient mice. Proc Natl Acad Sci U S A. 2007;104(6):1925–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Padykula HA. Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci. 1991;622:47–56.

    Article  CAS  PubMed  Google Scholar 

  62. Padykula HA, Coles LG, Okulicz WC, Rapaport SI, McCracken JA, King Jr NW, Longcope C, Kaiserman-Abramof IR. The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod. 1989;40(3):681–90.

    Article  CAS  PubMed  Google Scholar 

  63. Leyendecker G, Herbertz M, Kunz G, Mall G. Endometriosis results from the dislocation of basal endometrium. Hum Reprod. 2002;17(10):2725–36.

    Article  CAS  PubMed  Google Scholar 

  64. Valentijn AJ, Palial K, Al-Lamee H, Tempest N, Drury J, Von Zglinicki T, Saretzki G, Murray P, Gargett CE, Hapangama DK. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod. 2013. doi:10.1093/humrep/det285.

    PubMed  Google Scholar 

  65. Redwine DB. Was Sampson wrong? Fertil Steril. 2002;78(4):686–93.

    Article  PubMed  Google Scholar 

  66. Redwine DB. Sampson revisited: a critical review of the development of Sampson’s theory of origin of endometriosis. In: Garcia-Velasco JA, Rizk BR, editors. Endometriosis: current management and future trends. New Delhi: Jaypee Brothers Medical Publishers; 2010.

    Google Scholar 

  67. Katabuchi H. Endometriosis as an enigmatic pelvic disease [Japanese]. J Jpn Soc Endometriosis. 2008;29:22–31.

    Google Scholar 

Download references

Acknowledgements

I thank Hirotaka Masuda, Masanori Ono, Kaoru Miyazaki, Takashi Kajitani, Hiroshi Uchida, and the other members of my research group for their generous assistance and discussion and Hideyuki Okano and Yumi Matsuzaki for their collaboration with the endometrial and endometriotic stem cell project. We acknowledge the secretarial assistance of Rika Shibata. This work was partly supported by Grant-in-Aid from the Japan Society for the Promotion of Science (to T.M and Y.Y.), Grant-in-Aid from Keio University Sakaguchi-Memorial Medical Science Fund (to T.M.), and Grant-in-Aid from the Japan Medical Association (to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Maruyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Maruyama, T. (2014). Role of Stem Cells in the Pathogenesis of Endometriosis. In: Harada, T. (eds) Endometriosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54421-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54421-0_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54420-3

  • Online ISBN: 978-4-431-54421-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics