Skip to main content

Potential New Drugs for Endometriosis: Experimental Evidence

  • Chapter
  • First Online:
Endometriosis

Abstract

Endometriosis, a disease affecting 3–10 % of women of reproductive age, is characterized by the ectopic growth of endometrial tissue. Recent basic studies have revealed that the dysregulation of apoptosis, fibrosis, and epigenetic factors plays important roles in the pathogenesis of this enigmatic disease.

Contraceptive steroids, progestogens, agonists of gonadotropin-releasing hormone, androgens, and nonsteroidal anti-inflammatory agents have been used to treat endometriosis. Endometriosis treatments designed to lower circulating estradiol concentrations can be used only for a limited time due to unacceptable side effects. The development of medical treatments based on novel strategies to prevent or treat endometriosis has thus become a research priority.

Regarding the development of novel medical treatments for endometriosis, many researchers have been evaluating new drugs including molecular-targeting agents and herbal medicine as well as the newly developed hormonal agents. This chapter is a review of the findings from recent basic research on the pathogenesis of endometriosis and the evaluations of novel medical treatments for this disease, especially focusing on the inhibitors of nuclear factor-κB, the mevalonate-Rho/ROCK pathway, and histone deacetylase. These agents are now considered promising agents for the treatment and prevention of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364:1789–99.

    PubMed  Google Scholar 

  2. Practice Committee of the American Society for Reproductive Medicine. Endometriosis and infertility. Fertil Steril. 2004;81:1441–6.

    Google Scholar 

  3. Bergqvist A. A comparative study of the acceptability and effect of goserelin and nafarelin on endometriosis. Gynecol Endocrinol. 2000;14:425–32.

    CAS  PubMed  Google Scholar 

  4. Rogers PA, D’Hooghe TM, Fazleabas A, Gargett CE, Giudice LC, Montgomery GW, Rombauts L, Salamonsen LA, Zondervan KT. Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci. 2009;16:335–46.

    PubMed Central  PubMed  Google Scholar 

  5. Oberhammer F, Wilson JW, Dive C, et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993;12:3679–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. White E. Death-defying acts: a meeting review on apoptosis. Genes Dev. 1993;7:2277–84.

    CAS  PubMed  Google Scholar 

  7. Osborne BA, Schwartz LM. Essential genes that regulate apoptosis. Trends Cell Biol. 1994;4:394–8.

    CAS  PubMed  Google Scholar 

  8. Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–56.

    CAS  PubMed  Google Scholar 

  9. Beg AA, Baltimore D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science. 1996;274:782–4.

    CAS  PubMed  Google Scholar 

  10. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-α-induced apoptosis by NF-κB. Science. 1996;274:787–9.

    PubMed  Google Scholar 

  11. Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xL-BaK peptide complex: recognition between regulators of apoptosis. Science. 1997;225:983–6.

    Google Scholar 

  12. Harada M, Suganuma N, Furuhashi M, Nagasaka T, Nakashima N, Kikkawa F, Tomoda Y, Furui K. Detection of apoptosis in human endometriotic tissues. Mol Hum Reprod. 1996;2:307–15.

    CAS  PubMed  Google Scholar 

  13. Dmowski WP, Gebel H, Braun DP. Decreased apoptosis and sensitivity to macrophage mediated cytolysis of endometrial cells in endometriosis. Hum Reprod Update. 1998;4:696–701.

    CAS  PubMed  Google Scholar 

  14. Gebel HM, Braun DP, Tambur A, Frame D, Rana N, Dmowski WP. Spontaneous apoptosis of endometrial tissue is impaired with endometriosis. Fertil Steril. 1998;69:1042–7.

    CAS  PubMed  Google Scholar 

  15. Imai A, Takagi A, Tamaya T. Gonadotropin-releasing hormone analog repairs reduced endometrial cell apoptosis in endometriosis in vitro. Am J Obstet Gynecol. 2000;182:1142–6.

    CAS  PubMed  Google Scholar 

  16. Selam B, Arici A. Implantation defect in endometriosis: endometrium or peritoneal fluid. J Reprod Fertil Suppl. 2000;55:121–8.

    CAS  PubMed  Google Scholar 

  17. Peiro G, Diebold J, Buretton GB, Kimmig R, Lohrs U. Cellular apoptosis susceptibility gene expression in endometrial carcinoma: correlation with Bcl-2, Bax, and Caspase-3 expression and outcome. Int J Gynecol Pathol. 2001;20:359–67.

    CAS  PubMed  Google Scholar 

  18. Harada T, Kaponis A, Iwabe T, Taniguchi F, Makrydimas G, Sofikitis N, et al. Apoptosis in human endometrium and endometriosis. Hum Reprod Update. 2004;10:29–38.

    CAS  PubMed  Google Scholar 

  19. Nishida M, Nasu K, Ueda T, Fukuda J, Takai N, Miyakawa I. Endometriotic cells are resistant to interferon-γ-induced cell growth inhibition and apoptosis: a possible mechanism involved in the pathogenesis of endometriosis. Mol Hum Reprod. 2005;11:29–34.

    CAS  PubMed  Google Scholar 

  20. Dufournet C, Uzan C, Fauvet R, Cortez A, Siffroi J-P, Daria E. Expression of apoptosis-related proteins in peritoneal, ovarian and colorectal endometriosis. J Reprod Immunol. 2006;70:151–62.

    PubMed  Google Scholar 

  21. Izawa M, Harada T, Deura I, Taniguchi F, Iwabe T, Terakawa N. Drug-induced apoptosis was markedly attenuated in endometriotic stromal cells. Hum Reprod. 2006;21:600–4.

    PubMed  Google Scholar 

  22. Klemmt PAB, Carver JG, Kennedy SH, Koninckx PR, Mardon HJ. Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity. Fertil Steril. 2006;85:564–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Suganuma N, Harada M, Furuhashi M, Nawa A, Kikkawa F. Apoptosis in human and endometriotic tissues. Horm Res. 1997;48:42–7.

    CAS  PubMed  Google Scholar 

  24. Jones RK, Searle RF, Bulmer JN. Apoptosis and bcl-2 expression in normal human endometrium, endometriosis and adenomyosis. Hum Reprod. 1998;13:3496–502.

    CAS  PubMed  Google Scholar 

  25. Beliard A, Noel A, Foidart J-M. Reduction of apoptosis and proliferation in endometriosis. Fertil Steril. 2004;82:80–5.

    PubMed  Google Scholar 

  26. Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14:1328–31.

    CAS  PubMed  Google Scholar 

  27. Braun DP, Ding J, Shaheen F, Willey JC, Rana N, Dmowski WP. Quantitative expression of apoptosis-regulating genes in endometrium from women with and without endometriosis. Fertil Steril. 2007;87:263–8.

    CAS  PubMed  Google Scholar 

  28. Pellegrini C, Gori I, Achtari C, Hornung D, Chardonnens E, Wunder D, Fiche M, Canny GO. The expression of estrogen receptors as well as GREB1, c-MYC, and Cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil Steril. 2012;98:1200–8.

    CAS  PubMed  Google Scholar 

  29. Watanabe A, Taniguchi F, Izawa M, Suou K, Uegaki T, Takai E, et al. The role of survivin in the resistance of endometriotic stromal cells to drug-induced apoptosis. Hum Reprod. 2009;24:3172–9.

    CAS  PubMed  Google Scholar 

  30. Sakamoto Y, Harada T, Horie S, Iba Y, Taniguchi F, Yoshida S, et al. Tumor necrosis factor-a-induced interleukin-8 (IL-8) expression in endometriotic stromal cells, probably through nuclear factor-κB activation: gonadotropin releasing hormone agonist treatment reduced IL-8 expression. J Clin Endocrinol Metab. 2003;88:730–5.

    CAS  PubMed  Google Scholar 

  31. Guo S-W. Nuclear factor-κB (NF-κB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Invest. 2007;63:71–97.

    CAS  PubMed  Google Scholar 

  32. Wieser F, Vigne J-L, Ryan I, Hornung D, Djalali S, Taylor RN. Sulindac suppresses nuclear factor-κB activation and RANTES gene and protein expression in endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 2005;90:6441–7.

    CAS  PubMed  Google Scholar 

  33. Iba Y, Harada T, Horie S, Deura I, Iwabe T, Terakawa N. Lipopolysaccharide-promoted proliferation of endometriotic stromal cells via induction of tumor necrosis factor a and interleukin-8 expression. Fertil Steril. 2004;82 Suppl 3:1036–42.

    CAS  PubMed  Google Scholar 

  34. Yagyu T, Kobayashi H, Matsuzaki H, Wakahara K, Kondo T, Kurita N, et al. Thalidomide inhibits tumor necrosis factor-a-induced interleukin-8 expression in endometriotic stromal cells, possibly through suppression of nuclear factor-κB activation. J Clin Endocrinol Metab. 2005;90:3017–21.

    CAS  PubMed  Google Scholar 

  35. Nasu K, Nishida M, Ueda T, Yuge A, Takai N, Narahara H. Application of the selective nuclear factor-κB inhibitor, BAY 11–7085, for the treatment of endometriosis: an in vitro study. Am J Physiol Endocrinol Metab. 2007;293:E16–23.

    CAS  PubMed  Google Scholar 

  36. Zhang JJ, Xu ZM, Dai HY, Ji XQ, Duan YY, Zhang CM, et al. Application of the nuclear factor-κB inhibitor pyrrolidine dithiocarbamate for the treatment of endometriosis: an in vitro study. Fertil Steril. 2010;94:2942–4.

    CAS  PubMed  Google Scholar 

  37. Zhang HI, Li M, Wang F, Liu S, Li J, Wen Z, et al. Endometriotic epithelial cells induce MMPs expression in endometrial stromal cells via an NFқB-dependent pathway. Gynecol Endocrinol. 2010;26:456–67.

    CAS  PubMed  Google Scholar 

  38. Zhang JJ, Xu ZM, Zhang CM, Dai HY, Ji XQ, Wang XF, et al. Pyrrolidine dithiocarbamate inhibits nuclear factor-κB pathway activation and regulates adhesion, migration, invasion and apoptosis of endometriotic stromal cells. Mol Hum Reprod. 2011;17:175–81.

    CAS  PubMed  Google Scholar 

  39. Kim JH, Yang YI, Lee KT, Park HJ, Choi JH. Costunolide induces apoptosis in human endometriotic cells through inhibition of the prosurvival Akt and nuclear factor kappa B signaling pathway. Biol Pharm Bull. 2011;34:580–5.

    CAS  PubMed  Google Scholar 

  40. Takai E, Taniguchi F, Uegaki T, Iwabe T, Terakawa N, Harada T. Parthenolide reduces cell proliferation and PGE2 synthesis in human endometriotic stromal cells and inhibits development of endometriosis in murine mode. J Endometriosis. 2012;4:165.

    Google Scholar 

  41. Huber AV, Saleh L, Prast J, Haslinger P, Knöfler M. Human chorionic gonadotropin attenuates NF-κB activation and cytokine expression of endometriotic stromal cells. Mol Hum Reprod. 2007;13:595–604.

    CAS  PubMed  Google Scholar 

  42. Horie S, Harada T, Mitsunari M, Taniguchi F, Iwabe T, Terakawa N. Progesterone and progestational compounds attenuate tumor necrosis factor alpha-induced interleukin-8 production via nuclear factor kappaB inactivation in endometriotic stromal cells. Fertil Steril. 2005;83:1530–5.

    CAS  PubMed  Google Scholar 

  43. Gonzalez-Ramos R, Van Langendonckt A, Defrere S, Lousse JC, Mettlen M, Guillet A, Donnez J. Agents blocking the nuclear factor-κB pathway are effective inhibitors of endometriosis in an in vivo experimental model. Gynecol Obstet Invest. 2008;65:174–86.

    CAS  PubMed  Google Scholar 

  44. Celik O, Hascalik S, Elter K, Tagluk ME, Gurates B, Aydin NE. Combating endometriosis by blocking proteasome and nuclear factor-κB pathways. Hum Reprod. 2008;23:2458–65.

    CAS  PubMed  Google Scholar 

  45. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68:585–96.

    CAS  PubMed  Google Scholar 

  46. Matsuzaki S, Canis M, Darcha C, Dechelotte P, Pouly J-L, Bruhat MA. Fibrogenesis in peritoneal endometriosis. Gynecol Obstet Invest. 1998;47:197–9.

    Google Scholar 

  47. Bonte H, Chapron C, Vieira M, Fauconnier A, Barakat H, Fritel X, Vacher-Lavenu M-C, Dubuisson J-B. Histologic appearance of endometriosis infiltrating uterosacral ligaments in women with painful symptoms. J Am Assoc Gynecol Laparosc. 2002;9:519–24.

    PubMed  Google Scholar 

  48. Itoga T, Matsumoto T, Takeuchi H, Yamasaki S, Sasahara N, Hoshi T, Kinoshita K. Fibrosis and smooth muscle metaplasia in rectovaginal endometriosis. Pathol Int. 2003;53:371–5.

    PubMed  Google Scholar 

  49. Stovall DW, Anners JA, Halme J. Immunohistochemical detection of type I, III, and IV collagen in endometriotic implants. Fertil Steril. 1992;57:984–9.

    CAS  PubMed  Google Scholar 

  50. Anaf V, Simon P, Fayt I, Noel J-C. Smooth muscles are frequent components of endometriotic lesions. Hum Reprod. 2000;15:767–71.

    CAS  PubMed  Google Scholar 

  51. Yuge A, Nasu K, Matsumoto H, Nishida M, Narahara H. Collagen gel contractility is enhanced in human endometriotic stromal cells: a possible mechanism underlying the pathogenesis of endometriosis-associated fibrosis. Hum Reprod. 2007;22:938–44.

    CAS  PubMed  Google Scholar 

  52. Nasu K, Yuge A, Tsuno A, Narahara H. Mevalonate-Ras homology (Rho)/Rho-associated coiled-coil-forming protein kinase (ROCK)-mediated signaling pathway as a therapeutic target for the treatment of endometriosis-associated fibrosis. Curr Signal Transduct Ther. 2010;5:141–8.

    CAS  Google Scholar 

  53. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–99.

    CAS  PubMed  Google Scholar 

  54. Lee T-L, Lin Y-C, Mochitate K, Grinnell F. Stress-relaxation of fibroblasts in collagen matrices triggers ectocytosis of plasma membrane vesicles containing actin, annexins II and VI, and β1 integrin receptors. J Cell Sci. 1993;105:167–77.

    CAS  PubMed  Google Scholar 

  55. Amano M, Mukai H, Ono Y, Chihara K, Matsui T, Hamajima Y, Okawa K, Iwamatsu A, Kaibuchi K. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science. 1996;271:648–50.

    CAS  PubMed  Google Scholar 

  56. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245–8.

    CAS  PubMed  Google Scholar 

  57. Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996;39:189–93.

    Google Scholar 

  58. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–4.

    CAS  PubMed  Google Scholar 

  59. Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11:2295–322.

    PubMed  Google Scholar 

  60. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279:509–14.

    CAS  PubMed  Google Scholar 

  61. Park HJ, Galper JB. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors up-regulate transforming growth factor-beta signaling in cultured heart cells via inhibition of geranylgeranylation of RhoA GTPase. Proc Natl Acad Sci U S A. 1999;96:11525–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ravanti L, Heino J, Lopez-Otin C, Kahari VM. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem. 1999;274:2446–55.

    CAS  PubMed  Google Scholar 

  63. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000;57:976–83.

    CAS  PubMed  Google Scholar 

  64. Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem. 2001;276:341–7.

    CAS  PubMed  Google Scholar 

  65. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–35.

    CAS  PubMed  Google Scholar 

  66. Rosenfeldt H, Grinnell F. Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices. J Biol Chem. 2000;275:3088–92.

    CAS  PubMed  Google Scholar 

  67. Grundstrom G, Mosher DF, Sakai T, Rubin K. Integrin αvβ3 mediates platelet-derived growth factor-BB-stimulated collagen gel contraction in cells expressing signaling deficient integrin α2β1. Exp Cell Res. 2003;291:463–73.

    CAS  PubMed  Google Scholar 

  68. Fringer J, Grinnell F. Fibroblast quiescence in floating or released collagen matrices. J Biol Chem. 2001;276:31047–52.

    CAS  PubMed  Google Scholar 

  69. Carnevali S, Mio T, Adachi Y, Spurzem JR, Striz I, Romberger DJ, Illig M, Rennard SI. Gamma radiation inhibits fibroblast-mediated collagen gel retraction. Tissue Cell. 2003;35:459–69.

    CAS  PubMed  Google Scholar 

  70. Galois L, Hutasse S, Cortial D, Rousseau CF, Grossin L, Ronziere MC, Herbage D, Freyria AM. Bovine chondrocytes behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials. 2006;27:79–90.

    CAS  PubMed  Google Scholar 

  71. Nasu K, Yuge A, Tsuno A, Narahara H. Simvastatin inhibits the proliferation and the contractility of human endometriotic stromal cells: a promising agent for the treatment of endometriosis. Fertil Steril. 2009;92:2097–9.

    CAS  PubMed  Google Scholar 

  72. Tsuno A, Nasu K, Kawano Y, Yuge A, Li H, Abe W, Narahara H. Fasudil inhibits the proliferation and contractility and induces cell cycle arrest and apoptosis of human endometriotic stromal cells: a promising agent for the treatment of endometriosis. J Clin Endocrinol Metab. 2011;96:E1944–52.

    CAS  PubMed  Google Scholar 

  73. Nasu K, Tsuno A, Hirao M, Kobayashi H, Yuge A, Narahara H. Heparin is a promising agent for the treatment of endometriosis-associated fibrosis. Fertil Steril. 2010;94:46–51.

    CAS  PubMed  Google Scholar 

  74. Molgaard J, Von Schenck H, Olsson AG. Effects of simvastatin on plasma lipid, lipoprotein and apolipoprotein concentrations in hypercholesterolaemia. Eur Heart J. 1988;9:541–51.

    CAS  PubMed  Google Scholar 

  75. Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol. 1998;19:26–37.

    CAS  Google Scholar 

  76. Davidson M, McKenney J, Stein E, Schrott H, Bakker-Arkema R, Fayyad R, Black D. Comparison of one-year efficacy and safety of atorvastatin versus lovastatin in primary hypercholesterolemia. Atorvastatin Study Group I. Am J Cardiol. 1997;79:1475–81.

    CAS  PubMed  Google Scholar 

  77. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425–30.

    CAS  PubMed  Google Scholar 

  78. Graaf MR, Richel DJ, Van Noorden CJ, Guchelaar HJ. Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev. 2004;30:609–41.

    CAS  PubMed  Google Scholar 

  79. Casey PJ, Seabra MC. Protein prenyltransferases. J Biol Chem. 1996;271:5289–92.

    CAS  PubMed  Google Scholar 

  80. Auer J, Berent R, Weber T, Eber B. Clinical significance of pleiotropic effects of statins: lipid reduction and beyond. Curr Med Chem. 2002;9:1831–50.

    CAS  PubMed  Google Scholar 

  81. Menge T, Hartung HP, Stuve O. Statins – a cure-all for the brain? Nat Rev Neurosci. 2005;6:325–31.

    CAS  PubMed  Google Scholar 

  82. Esfandiari N, Khazaei M, Ai J, Bielecki R, Gotlieb L, Casper RF. Effect of a statin on an in vitro model of endometriosis. Fertil Steril. 2007;87:257–62.

    CAS  PubMed  Google Scholar 

  83. Cakmak H, Basar M, Seval-Celik Y, Osteen KG, Duleba AJ, Taylor HS, Lockwood CJ, Arici A. Statins inhibit monocyte chemotactic protein 1 expression in endometriosis. Reprod Sci. 2012;19:572–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sharma I, Dhawan V, Mahajan N, Saha SC, Dhaliwal LK. In vitro effects of atorvastatin on lipopolysaccharide-induced gene expression in endometriotic stromal cells. Fertil Steril. 2010;94:1639–46.

    CAS  PubMed  Google Scholar 

  85. Oktem M, Esinler I, Eroglu D, Haberal N, Bayraktar N, Zeyneloglu HB. High-dose atorvastatin causes regression of endometriotic implants: a rat model. Hum Reprod. 2007;22:1474–80.

    CAS  PubMed  Google Scholar 

  86. Bruner-Tran KL, Osteen KG, Duleba AJ. Simvastatin protects against the development of endometriosis in a nude mouse model. J Clin Endocrinol Metab. 2009;94:2489–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Mraiche F, Cena J, Das D, Vollrath B. Effects of statins on vascular function of endothelin-1. Br J Pharmacol. 2005;144:715–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ruperez M, Rodrigues-Diez R, Blanco-Colio LM, Sanchez-Lopez E, et al. HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis. Role of RhoA/ROCK and MAPK pathways. Hypertension. 2007;50:377–83.

    CAS  PubMed  Google Scholar 

  89. Hirsh J, Raschke R, Warrkentin TE, Dalen JE, Deykin D, Poller L. Heparin: mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1995;108:258–75.

    Google Scholar 

  90. Becker RC. Optimizing heparin compounds: a working construct for future antithrombotic drug development. J Thromb Thrombolysis. 2004;18:55–8.

    CAS  PubMed  Google Scholar 

  91. Guidry C, Grinnell F. Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts. J Cell Biol. 1987;104:1097–103.

    CAS  PubMed  Google Scholar 

  92. Schaefer T, Roux M, Stuhlsatz HW, Herken R, Coulomb B, Krieg T, Smola H. Glycosaminoglycans modulate cell-matrix interactions of human fibroblasts and endothelial cells in vitro. J Cell Sci. 1996;109:479–88.

    CAS  PubMed  Google Scholar 

  93. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    CAS  PubMed  Google Scholar 

  94. Turner BM. Cellular memory and the histone code. Cell. 2002;111:285–91.

    CAS  PubMed  Google Scholar 

  95. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    CAS  PubMed  Google Scholar 

  96. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    CAS  PubMed  Google Scholar 

  97. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    CAS  PubMed  Google Scholar 

  98. Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1:11–9.

    CAS  PubMed  Google Scholar 

  99. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006;174:341–8.

    PubMed Central  PubMed  Google Scholar 

  100. Marks PA, Rifkind RA, Richon VM, Breslow R. Inhibitors of histone deacetylase are potentially effective anticancer agents. Clin Cancer Res. 2001;7:759–60.

    CAS  PubMed  Google Scholar 

  101. Norton VG, Imai BS, Yau P, Bradbury EM. Histone acetylation reduces nucleosome core particle linking number change. Cell. 1989;57:449–57.

    CAS  PubMed  Google Scholar 

  102. Choi CH, Burton ZF, Usheva A. Auto-acetylation of transcription factors as a control mechanism in gene expression. Cell Cycle. 2004;3:114–5.

    CAS  PubMed  Google Scholar 

  103. Joseph J, Mudduluru G, Antony S, Vashistha S, Ajitkumar P, Somasundaram K. Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene. 2004;23:6304–15.

    CAS  PubMed  Google Scholar 

  104. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1:106–11.

    PubMed  Google Scholar 

  105. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril. 2007;87:24–32.

    CAS  PubMed  Google Scholar 

  106. Xue Q, Lin Z, Yin P, Milad MP, Cheng Y-H, Confino E, Reierstad S, Bulun SE. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J Clin Endocrinol Metab. 2007;92:3261–7.

    CAS  PubMed  Google Scholar 

  107. Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E, Yin P, Milad MP, Confino E, Reierstad S, Innes J, Bulun SE. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007;77:681–7.

    CAS  PubMed  Google Scholar 

  108. Kawano Y, Nasu K, Li H, Tsuno A, Abe W, Takai N, Narahara H. Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum Reprod. 2011;26:2486–98.

    CAS  PubMed  Google Scholar 

  109. Nasu K, Kawano Y, Tsukamoto Y, Takano M, Takai N, Li H, Furukawa Y, Abe W, Moriyama M, Narahara H. Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic target. J Obstet Gynaecol Res. 2011;37:683–95.

    CAS  PubMed  Google Scholar 

  110. Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod. 2013;28:750–61.

    CAS  PubMed  Google Scholar 

  111. Richon VM, O’Brien JP. Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res. 2002;8:662–4.

    PubMed  Google Scholar 

  112. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet. 2003;19:286–93.

    CAS  PubMed  Google Scholar 

  113. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103–7.

    CAS  PubMed  Google Scholar 

  114. Warrener R, Beamish H, Burgess A, Waterhouse NJ, Giles N, Fairlie D, Gabrielli B. Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J. 2003;17:1550–2.

    CAS  PubMed  Google Scholar 

  115. Wu Y, Guo SW. Suppression of IL-1β-induced COX-2 expression by trichostatin A (TSA) in human endometrial stromal cells. Eur J Obstet Gynecol Reprod Biol. 2007;135:88–93.

    CAS  PubMed  Google Scholar 

  116. Wu Y, Starzinski-Powitz A, Guo SW. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod Sci. 2007;14:374–82.

    CAS  PubMed  Google Scholar 

  117. Wu Y, Guo SW. Histone deacetylase inhibitors trichostatin A and valproic acid induce cell cycle arrest and p21 expression in immortalized human endometrial stromal cells. Eur J Obstet Gynecol Reprod Biol. 2008;137:198–203.

    CAS  PubMed  Google Scholar 

  118. Wu Y, Starzinski-Powitz A, Guo S-W. Prolonged stimulation with tumor necrosis factor-α induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. Fertil Steril. 2008;90:234–7.

    PubMed  Google Scholar 

  119. Wu Y, Guo SW. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor agonists synergistically suppress proliferation of immortalized endometrial stromal cells. Fertil Steril. 2009;91(Suppl):2142–7.

    CAS  PubMed  Google Scholar 

  120. Wu Y, Starzinski-Powitz A, Guo S-W. Constitutive and tumor necrosis factor-alpha-stimulated activation of nuclear factor-kappab in immortalized endometriotic cells and their suppression by trichostatin A. Gynecol Obstet Invest. 2010;70:23–33.

    CAS  PubMed  Google Scholar 

  121. Imesch P, Fink D, Fedier A. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells. Fertil Steril. 2010;94:2838–42.

    CAS  PubMed  Google Scholar 

  122. Imesch P, Samartzis EP, Schneider M, Fink D, Fedier A. Inhibition of transcription, expression, and secretion of the vascular epithelial growth factor in human epithelial endometriotic cells by romidepsin. Fertil Steril. 2011;95:1579–83.

    CAS  PubMed  Google Scholar 

  123. Lu Y, Nie J, Liu X, Zheng Y, Guo SW. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice. Hum Reprod. 2010;25:1014–25.

    CAS  PubMed  Google Scholar 

  124. Liu M, Liu X, Zhang Y, Guo SW. Valproic acid and progestin inhibit lesion growth and reduce hyperalgesia in experimentally induced endometriosis in rats. Reprod Sci. 2012;19:360–73.

    CAS  PubMed  Google Scholar 

  125. Liu X, Guo SW. A pilot study on the off-label use of valproic acid to treat adenomyosis. Fertil Steril. 2008;89:246–50.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 13237327 to K. Nasu, no. 25861500 to Y. Kawano, and no. 23592407 to H. Narahara).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaei Nasu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nasu, K. et al. (2014). Potential New Drugs for Endometriosis: Experimental Evidence. In: Harada, T. (eds) Endometriosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54421-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54421-0_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54420-3

  • Online ISBN: 978-4-431-54421-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics