Skip to main content

Historical and Modern Perspective of Walking Robots

  • Chapter
  • First Online:
Hydraulically Actuated Hexapod Robots

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 66))

Abstract

Study of historical evolution and modern point of view on a complex subject like robotics invokes motivations and professionalisms among the researchers. Research on walking machines started at the time of Leonardo da Vinci and that ultimately culminated into the development of the modern walking robots through the transformations and refinements of the ideas and design methodology over the centuries. Obviously, the allied technology of mechatronics, particularly for sensing, actuation, and control, available at various points of time in the past influenced the design and implementation of walking robot quite heavily. The urge for mimicking the walking creatures in the past and the various efforts to apply the knowledge gathered from the observations of the biological world in the design and control of walking robots has added a new dimension as well as posed many new challenges in the walking robot research. However, the various challenges faced during the design and implementation of walking robots in the past and lessons learned from them to overcome those challenges enriched the technology of walking robot and drove it toward maturity. Therefore, the knowledge of the historical evolution of walking robotics research and its modern point of view will definitely inspire a robotics researcher for undertaking new challenges for the design and development of walking robots and will also guide him to take correct design decision. This chapter presents the historical evolution of walking robots and its perspective in a condensed manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbone G, Ceccarelli M (2005) Legged robotic systems. In: Kordic V, Lazinica A, Merdan M (eds) Cutting edge robotics. ARS International/pro literatur, Vienna/Mammendorf

    Google Scholar 

  2. Zielinska T (2004) Development of walking machines: historical perspective. In: Proceedings of the international symposium on history of machines and mechanisms. Kluwer Academic Publisher, pp 357–370

    Google Scholar 

  3. SilvaM F, MachadoJ AT (2007) A historical perspective of legged robots. J Vib Control 13(9–10):1447–1486

    Article  Google Scholar 

  4. Kajita S, Espiau B (2008) Legged robots. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Germany

    Google Scholar 

  5. Pfeiffer F, Josef S, Robmann T, Muchen TU (1998) Legged walking machines. In: Khatib O, Anibal TA (eds) Autonomous robotic systems. Springer, Germany

    Google Scholar 

  6. Boone G, Hodgins J (2000) Walking and running machines. MIT Encyclopedia of the Cognitive Sciences. http://rm-f.net/~pennywis/MITECS/Entry/boone.html. Accessed 4 June 2012

  7. Stone WL (2005) The history of robotics. In: Kurfess TR (ed) Robotics and automation handbook. CRC, Boca Raton

    Google Scholar 

  8. Rosheim ME (1994) Robot evolution: the development of anthrobotics, 1st edn. Wiley, New York

    Google Scholar 

  9. Tesar D (1997) Where is the field of robotics going? Technical report of the robotics research group, The University of Texas at Austin

    Google Scholar 

  10. Rosheim ME (1997) In the footsteps of Leonardo. IEEE Robot Automat Mag 4:12–14

    Article  Google Scholar 

  11. Raibert MH (1986) Legged robots. Commun ACM 29(6):499–514

    Article  MATH  Google Scholar 

  12. Machado JAT, Silva M (2012) An overview of legged robots. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8192. Accessed 4 June 2012

  13. Song SM, Waldron KJ (1989) The machine that walk: the adaptive suspension vehicle. MIT, Cambridge

    Google Scholar 

  14. Wallen J (2008) The history of the industrial robot. Technical reports from the Automatic Control group at Linköpingsuniversitet. http://www.control.isy.liu.se/publications. Accessed 4 June 2012

  15. Garcia E, Jimenez MA, Santos PGD, Armada M (2007) The evolution of robotics research. IEEE Robot Automat Mag 14(1):90–103

    Article  Google Scholar 

  16. Kar DC (2003) Design of statically stable walking robot: a review. J Robot Syst 20(11):671–686

    Article  MATH  Google Scholar 

  17. RUN THE PLANET (2012) The history of walking robots. http://www.runtheplanet.com/resources/historical/walkingrobots.asp. Accessed 4 June 2012

  18. McGhee RB (1985) Vehicular legged locomotion. In: Sirdis GN (ed) Advances in automation and robotics. JAI Press Inc., Greenwich

    Google Scholar 

  19. Hirose S (2001) Super mechano-system: new perspective for versatile robotic system. In: Rus D, Singh S (eds) Experimental robotics VII. Springer, Berlin, Heidelberg

    Google Scholar 

  20. Hirose S, Kato K (2000) Study on quadruped walking robot in Tokyo institute of technology – past, present and future. In: Proceedings of the IEEE international conference on robotics and automation, pp 414–419

    Google Scholar 

  21. Hirai K (1997) Current and future perspective of Honda humanoid robot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 500–508

    Google Scholar 

  22. Hartikainen K, Halme A, Lehtinen H, Koskinen K (1992) MECANT I: a six legged walking machine for research purposes in outdoor environment. Technical reports 6, series B, Helsinki University of Technology, Automation Technology Laboratory

    Google Scholar 

  23. Santos PG, Garcia E, Estremera J (2006) Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, London

    Google Scholar 

  24. Nonami K, Huang Q, Komizo D, Fukao Y, Asai Y, Shiraishi Y, Fujimoto M, Ikedo Y (2003) Development and control of mine detection robot COMET-II and COMET-III. JSME Int J Ser C 46(3):881–890

    Article  Google Scholar 

  25. Nonami K, Huang Q, Komizo D, Fukao Y, Asai Y, Shirashi Y, Fujimoto M, Ikedo Y (2002) Development of mine detection robot COMET-II and COMET-III. In: Proceedings of the 6th international conference on motion and vibration control. Saitama, pp 449–454

    Google Scholar 

  26. Kimura H, Tsuchiya K, Ishiguro A, Witte H (2006) Adaptive motion of animals and machines. Springer, Tokyo

    Book  Google Scholar 

  27. Voth D (2002) Nature’s guide to robot design. IEEE Intell Syst Mag 17:4–6

    Article  Google Scholar 

  28. Beer R, Quinn RD, Ciel HJ, Ritzmann RE (1997) Biologically inspired approaches in robotics: what we can learn from insects. Commun ACM 40(3):30–38

    Article  Google Scholar 

  29. Berns K (2002) Biologically inspired walking machines. In: Gini M, Shen WM, Torras C, Yuasa H (eds) Intelligent autonomous systems 7. IOS, Amsterdam

    Google Scholar 

  30. Hasslacher B, Tilden MW (1995) Living machines. Robot Autonom Syst 15(1–2):143–169

    Article  Google Scholar 

  31. Pfeiffer F, EltzeJ WHJ (1995) Six-legged technical walking considering biological principles. Robot Autonom Syst 14(2–3):223–232

    Article  Google Scholar 

  32. Dillmann R, Albiez J, Gabmann B, Kerscher T, Zollner M (2007) Biologically inspired walking machines: design, control and perception. Phil Trans R Soc A 365:133–151

    Article  Google Scholar 

  33. Quinn RD, Ritzmann RE (1998) Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connect Sci 10(3–4):239–254

    Article  Google Scholar 

  34. NaikaK MM, Bardenc J (2010) Design, development and control of a hopping machine – an exercise in biomechatronics. Appl Bionics Biomech 7(1):83–94

    Article  Google Scholar 

  35. Hirzinger G, Fischer M, Brunner B, Koeppe R, Otter M, Grebenstein M, Schäfer I (1999) Advances in robotics: the DLR experience. Int J Robot Res 18(11):1064–1087

    Article  Google Scholar 

  36. Arikawa K, Hirose S (2007) Mechanical design of walking machines. Phil Trans R Soc A 365(1850):171–183

    Article  Google Scholar 

  37. Yokoyama K, Handa H, Isozumi T, Fukase Y, Kaneko K, Kanehiro F, Kawai Y, Tomita F, Hirukawa H (2003) Cooperative works by a human and a humanoid robot. In: Proceedings of the IEEE international conference on robotics & automation, Taipei, pp 2985–2991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nonami, K., Barai, R.K., Irawan, A., Daud, M.R. (2014). Historical and Modern Perspective of Walking Robots. In: Hydraulically Actuated Hexapod Robots. Intelligent Systems, Control and Automation: Science and Engineering, vol 66. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54349-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54349-7_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54348-0

  • Online ISBN: 978-4-431-54349-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics