Skip to main content

Introduction

  • Chapter
  • First Online:
Hydraulically Actuated Hexapod Robots

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 66))

  • 1679 Accesses

Abstract

Legs have evolved as a means of propulsion of the body of animals and insects through millions of years of evolution that enabled them for terrain adaptive locomotion on any part of the earth’s land surface. Inspired from the observed advantages in locomotion of legged creatures in the biological world, scientists and engineers are applying the principles of biomechanics and bio-intelligence for the design of legged robots. Modern legged robotics research although biologically inspired, it is not yet possible to replicate completely the biological systems for design and implement a walking robot. This is due to the fact that the biological actuation, sensing, and reasoning principles and mechanisms are completely different from the current engineering principles and mechanisms of the actuation, sensing, and computer systems. Among various types of legged robots, hexapod walking robots offer good amount of static stability margin and locomotion speed, and at the same time they are fault tolerant. Therefore, hexapod walking robots have emerged as a popular robotic system for various critical and hazardous field applications. This chapter covers various theoretical and practical aspects of legged locomotion and also introduces many popular and successfully implemented legged robots around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGhee RB (1985) Vehicular legged locomotion. In: Sirdis GN (ed) Advances in automation and robotics. Jai Press, Inc., Greenwich

    Google Scholar 

  2. Song SM, Waldron KJ (1989) The machine that walk: the adaptive suspension vehicle. MIT, Cambridge

    Google Scholar 

  3. Machado JAT, Silva M (2012) An overview of legged robots. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8192. Accessed 4 June 2012

  4. Pfeiffer F, Josef S, Robmann T, Muchen TU (1998) Legged walking machines. In: Khatib O, Anibal TA (eds) Autonomous robotic systems. Springer, Germany

    Google Scholar 

  5. Raibert MH (1986) Legged robots. Commun ACM 29(6):499–514

    Article  MATH  Google Scholar 

  6. Kar DC (2003) Design of statically stable walking robot: a review. J Robot Syst 20(11):671–686

    Article  MATH  Google Scholar 

  7. Arikawa K, Hirose S (2007) Mechanical design of walking machines. Phil Trans R Soc A 365(1850):171–183

    Article  Google Scholar 

  8. Garcia E, Jimenez MA, Santos PGD, Armada M (2007) The evolution of robotics research. IEEE Robot Autom Mag 14(1):90–103

    Article  Google Scholar 

  9. Boone G, Hodgins J (2000) Walking and running machines. In: MIT encyclopedia of the cognitive sciences. http://rm-f.net/~pennywis/MITECS/Entry/boone.html

  10. Carbone G, Ceccarelli M (2005) Legged robotic systems. In: Kordic V, Lazinica A, Merdan M (eds) Cutting edge robotics. ARS International/pro literatur, Vienna/Mammendorf

    Google Scholar 

  11. Fu KS, Gonzalez RC, Lee CSG (1987) Robotics: control, sensing, vision, and intelligence. The McGraw Hill Companies, Inc., New York

    Google Scholar 

  12. Hirzinger G, Fischer M, Brunner B, Koeppe R, Otter M, Grebenstein M, Schäfer I (1999) Advances in robotics: the DLR experience. Int J Robot Res 18(11):1064–1087

    Article  Google Scholar 

  13. Latombe JC (1991) Robot motion planning. Kluwer Academic Publishers, Massachusetts

    Book  Google Scholar 

  14. Groover MP, Weiss M, Nagel RN, Odrey NG (1986) Industrial robotics – technology, programming, and applications. McGraw-Hill Book Company, Singapore

    Google Scholar 

  15. Trevelyan J (1999) Redefining robotics for the new millennium. Int J Robot Res 18(12):1211–1223

    Article  Google Scholar 

  16. Kobayashi HP, Inagaki K (1991) Basic design of a hexapod walking robot. Fifth Int Conf Adv Robot 2:1526–1529

    Google Scholar 

  17. Pfeiffer F, EltzeJ WHJ (1995) Six-legged technical walking considering biological principles. Robot Auton Syst 14(2–3):223–232

    Article  Google Scholar 

  18. Dillmann R, Albiez J, Gabmann B, Kerscher T, Zollner M (2007) Biologically inspired walking machines: design, control and perception. Phil Trans R Soc A 365:133–151

    Article  Google Scholar 

  19. Voth D (2002) Nature’s guide to robot design. IEEE Intell Syst Mag 17:4–6

    Article  Google Scholar 

  20. Quinn RD, Ritzmann RE (1998) Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connect Sci 10(3–4):239–254

    Article  Google Scholar 

  21. Beer R, Quinn RD, Ciel HJ, Ritzmann RE (1997) Biologically inspired approaches in robotics: what we can learn from insects. Commun ACM 40(3):30–38

    Article  Google Scholar 

  22. Roennau A, Kerscher T, Dillmann (2010) Design and kinematics of a biologically-inspired leg for a six-legged walking machine. In: Proceedings of the 3rd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics, Tokyo, pp 626–631

    Google Scholar 

  23. Hasslacher B, Tilden MW (1995) Living machines. Robot Auton Syst 15(1–2):143–169

    Article  Google Scholar 

  24. Weidemann HJ, Pjeifer F, Eltze J (1994) The six-legged TUM walking robot. Proc IEEE/RSJ/GI Int Conf Intell Robots Syst 2:1026–1033

    Google Scholar 

  25. Nonami K, Huang Q, Komizo D, Fukao Y, Asai Y, Shiraishi Y, Fujimoto M, Ikedo Y (2003) Development and control of mine detection robot COMET-II and COMET-III. JSME Int J Ser C 46(3):881–890

    Article  Google Scholar 

  26. Zielinska T, Goh T, Chong CK (1999) Design of autonomous hexapod. In: Proceedings of the 1st IEEE workshop on robot motion and control, Kiekrz, pp 65–69

    Google Scholar 

  27. Zielinska T (2000) Efficiency analysis in the design of walking machines. J Theor Appl Mech 3(38):693–708

    Google Scholar 

  28. Nonami K, Ikedo Y (2004) Walking control of COMET-III using discrete time preview sliding mode control. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Sendai, pp 3219–3225

    Google Scholar 

  29. Barai RK, Nonami K (2007) Locomotion control of a hydraulically actuated hexapod robot by robust adaptive fuzzy control and dead zone compensation. Robotica 25(3):269–281

    Article  Google Scholar 

  30. Braunl T (2008) Embedded robotics. Springer, Germany

    Book  Google Scholar 

  31. Bailey P (1994) The merits of hexapods for robotic applications. Proc IEE Colloquium Next Steps Ind Robot 8:1–6

    Google Scholar 

  32. Kar DC, Issac KK, Jayarajan (2003) Gaits and energetic in terrestrial legged locomotion. Mech Mach Theory 38(4):355–366

    Article  MATH  MathSciNet  Google Scholar 

  33. Kajita S, Espiau B (2008) Legged robots. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Germany

    Google Scholar 

  34. Nabulsi S, Montes H, Armada M (2005) ROBOCLIMBER: Control system architecture. In: Armada M, Santos PG (eds) Climbing and walking robots. Springer, Berlin, pp 943–952

    Chapter  Google Scholar 

  35. Santos PG, Garcia E, Estremera J (2006) Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, London

    Google Scholar 

  36. Hartikainen K, Halme A, Lehtinen H, Koskinen K (1992) MECANT I: a six legged walking machine for research purposes in outdoor environment. In: Series B, Technical Reports, 6. Helsinki University of Technology, Automation Technology Laboratory, Helsinki

    Google Scholar 

  37. Kimura H, Tsuchiya K, Ishiguro A, Witte H (2006) Adaptive motion of animals and machines. Springer, Tokyo

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nonami, K., Barai, R.K., Irawan, A., Daud, M.R. (2014). Introduction. In: Hydraulically Actuated Hexapod Robots. Intelligent Systems, Control and Automation: Science and Engineering, vol 66. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54349-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54349-7_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54348-0

  • Online ISBN: 978-4-431-54349-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics