Skip to main content

Histology of Posterior Capsular Opacification

  • Chapter
  • First Online:
Lens Epithelium and Posterior Capsular Opacification

Abstract

Lens epithelial cells (LECs) undergo tissue repair reaction following cataract-intraocular lens (IOL) surgery. However, the reaction in turn produces opacification of the lens capsule that potentially impairs vision. Histology and immunohistochemistry are employed for characterization of the tissues of capsular opacification. LECs transform into regenerated lens fiber structures and myofibroblasts. The former behavior develops Soemmering’s ring in the peripheral capsular bag and Elschnig’s pearls on the inner surface of the posterior capsule. Histology shows lens-like cellular arrangement in these structures. The latter response is called epithelial-mesenchymal transition (EMT) and generates fibrous tissue accumulation on the capsule. EMT-derived cells no longer exhibit an epithelial feature, but accumulate fibrous extracellular matrix around themselves. Contraction of EMT myofibroblasts shrinks the postoperative lens capsule around an IOL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  2. Flanders KC, Major CD, Arabshahi A, Aburime EE, Okada MH, Fujii M, Blalock TD, Schultz GS, Sowers A, Anzano MA, Mitchell JB, Russo A, Roberts AB (2003) Interference with transforming growth factor-b/Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am J Pathol 163:2247–2257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168(6):1848–1860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Saika S (2007) Yin and yang in cytokine regulation of corneal wound healing: roles of TNFα. Cornea 26(9 Suppl 1):S70–S74

    Article  PubMed  Google Scholar 

  5. Saika S, Yamanaka O, Sumioka T, Miyamoto T, Miyazaki K, Okada Y, Kitano A, Shirai K, Tanaka S, Ikeda K (2008) Fibrotic disorders in the eye: targets of gene therapy. Prog Retin Eye Res 27(2):177–196. doi:10.1016/j.preteyeres.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Saika S (2004) Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retin Eye Res 23(3):283–305

    Article  CAS  PubMed  Google Scholar 

  7. Blomstedt G, Fagerholm P, Gallo J, Philipson B (1987) After-cataract in the rabbit eye following extracapsular cataract extraction - a wound healing reaction. Acta Ophthalmol Suppl 182:93–99

    CAS  PubMed  Google Scholar 

  8. Saika S, Miyamoto T, Ishida I, Okada Y, Ohnishi Y, Ooshima A (2001) Lens epithelial cell regeneration of a capsule-like structure during postoperative healing in rabbits. J Cataract Refract Surg 27(7):1076–1078

    Article  CAS  PubMed  Google Scholar 

  9. Saika S, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Sumioka T, Shirai K, Kitano A, Miyazaki K, Tanaka S, Ikeda K (2008) Epithelial-mesenchymal transition as a therapeutic target for prevention of ocular tissue fibrosis. Endocr Metab Immune Disord Drug Targets 8(1):69–76

    Article  CAS  PubMed  Google Scholar 

  10. Saika S (2006) Practical ophthalmology 8. Imasugu-yakudatsu-ganbyouri, Bunkoudou, Tokyo, Japan, p 138 (in Japanese)

    Google Scholar 

  11. Saika S (2006) Practical ophthalmology 8. Imasugu-yakudatsu-ganbyouri, Bunkoudou, Tokyo, Japan, p 137 (in Japanese)

    Google Scholar 

  12. Saika S, Kawashima Y, Miyamoto T, Okada Y, Tanaka SI, Ohmi S, Minamide A, Yamanaka O, Ohnishi Y, Ooshima A, Yamanaka A (1998) Immunolocalization of prolyl 4-hydroxylase subunits, alpha-smooth muscle actin, and extracellular matrix components in human lens capsules with lens implants. Exp Eye Res 66(3):283–294

    Article  CAS  PubMed  Google Scholar 

  13. Werner L (2008) Biocompatibility of intraocular lens materials. Curr Opin Ophthalmol 19(1):41–49

    Article  PubMed  Google Scholar 

  14. Apple DJ, Werner L (2001) Complications of cataract and refractive surgery: a clinicopathological documentation. Trans Am Ophthalmol Soc 99:95–107

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Dewey S (2006) Posterior capsule opacification. Curr Opin Ophthalmol 17(1):45–53

    Article  PubMed  Google Scholar 

  16. Wormstone IM (2002) Posterior capsule opacification: a cell biological perspective. Exp Eye Res 74(3):337–347

    Article  PubMed  Google Scholar 

  17. Wormstone IM, Wang L, Liu CS (2009) Posterior capsule opacification. Exp Eye Res 88(2):257–269

    Article  CAS  PubMed  Google Scholar 

  18. de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW (2005) Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179(1–2):43–55

    Article  PubMed  Google Scholar 

  19. Saika S, Okada Y, Miyamoto T, Ohnishi Y, Ooshima A, McAvoy JW (2001) Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair. Exp Eye Res 72(6):679–686

    Article  CAS  PubMed  Google Scholar 

  20. Shirai K, Saika S, Okada Y, Oda S, Ohnishi Y (2004) Histology and immunohistochemistry of fibrous posterior capsule opacification in an infant. J Cataract Refract Surg 30(2):523–526

    Article  PubMed  Google Scholar 

  21. Buehl W, Findl O (2008) Effect of intraocular lens design on posterior capsule opacification. J Cataract Refract Surg 34(11):1976–1985

    Article  PubMed  Google Scholar 

  22. Saeed MU, Jafree AJ, Saeed MS, Zia R, Sheikh IM, Heravi M (2012) Intraocular lens and capsule opacification with hydrophilic and hydrophobic acrylic materials. Semin Ophthalmol 27(1–2):15–18

    Article  PubMed  Google Scholar 

  23. Kappelhof JP, Pameyer JH, De Jong PT, Jongkind JF, Vrensen GF (1986) The proteinaceous coating and cytology of implant lenses in rabbits. Am J Ophthalmol 102(6):750–758

    CAS  PubMed  Google Scholar 

  24. Saika S, Ohmi S, Tanaka S, Ohnishi Y, Yamanaka A, Ooshima A (1997) Light and scanning electron microscopy of rabbit lens capsules with intraocular lenses. J Cataract Refract Surg 23(5):787–794

    Article  CAS  PubMed  Google Scholar 

  25. Saika S (2006) Practical ophthalmology 8. Imasugu-yakudatsu-ganbyouri, Bunkoudou, Tokyo, Japan, p 141 (in Japanese)

    Google Scholar 

  26. Saika S (2001) Practical new mook of ophthalmology 1. Ganshikkann-to-shousyoutiyu, Kanehara-syuppann, Tokyo, Japan, p 29 (in Japanese)

    Google Scholar 

  27. Saika S (2006) Practical Ophthalmology 8. Imasugu-yakudatsu-ganbyouri, Bunkoudou, Tokyo, p 139 (in Japanese)

    Google Scholar 

  28. Ishibashi T, Sugai S, Kubota T, Ohnishi Y, Inomata H (1990) Cellular adhesiveness on implanted lenses in monkeys. Graefes Arch Clin Exp Ophthalmol 228(4):356–362

    Article  CAS  PubMed  Google Scholar 

  29. Saika S, Tanaka S, Ohmi S, Minamide A, Ohnishi Y, Yamanaka A, Ooshima A, Kimura M (1997) Deposition of extracellular matrix on intraocular lenses in rabbits: an immunohistochemical and transmission electron microscopic study. Graefes Arch Clin Exp Ophthalmol 235(4):241–247

    Article  CAS  PubMed  Google Scholar 

  30. Saika S, Kawashima Y, Miyamoto T, Okada Y, Tanaka S, Yamanaka O, Ohnishi Y, Ooshima A, Yamanaka A (1998) Immunohistochemical identification of proteoglycan types in fibrotic human capsules with intraocular lens implants. Jpn J Ophthalmol 42(5):368–372

    Article  CAS  PubMed  Google Scholar 

  31. Ishibashi T, Hatae T, Inomata H (1994) Collagen types in human posterior capsule opacification. J Cataract Refract Surg 20(6):643–646

    Article  CAS  PubMed  Google Scholar 

  32. Wederell ED, de Iongh RU (2006) Extracellular matrix and integrin signaling in lens development and cataract. Semin Cell Dev Biol 17(6):759–776

    Article  CAS  PubMed  Google Scholar 

  33. Kappelhof JP, Vrensen GF (1992) The pathology of after-cataract. A minireview. Acta Ophthalmol Suppl (205):13–24

    Google Scholar 

  34. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503

    Article  Google Scholar 

  35. Saika S, Miyamoto T, Kawashima Y, Okada Y, Yamanaka O, Ohnishi Y, Ooshima A (2000) Immunolocalization of TGF-β1, -β2, and -β3, and TGF-β receptors in human lens capsules with lens implants. Graefes Arch Clin Exp Ophthalmol 238(3):283–293

    Article  CAS  PubMed  Google Scholar 

  36. Saika S (2006) TGFβ pathobiology in the eye. Lab Invest 86(2):106–115

    Article  CAS  PubMed  Google Scholar 

  37. Roberts AB, Tian F, Byfield SD, Stuelten C, Ooshima A, Saika S, Flanders KC (2006) Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 17(1–2):19–27

    Article  CAS  PubMed  Google Scholar 

  38. Ishikawa N, Miyamoto T, Okada Y, Saika S (2011) Cell adhesion on explanted intraocular lenses: part 1: analysis of explanted IOLs. J Cataract Refract Surg 37(7):1333–1338

    Article  PubMed  Google Scholar 

  39. Ishikawa N, Miyamoto T, Okada Y, Saika S (2011) Cell adhesion on explanted intraocular lenses part 2: experimental study of a surface-modified IOL in rabbits. J Cataract Refract Surg 37(7):1339–1342. doi:10.1016/j.jcrs.2011.04.002

    Article  PubMed  Google Scholar 

  40. Richards RG, Moriarty TF, Miclau T, McClellan RT, Grainger DW (2012) Advances in biomaterials and surface technologies. J Orthop Trauma 26(12):703–707. doi:10.1097/BOT.0b013e31826e37a2

    Article  PubMed  Google Scholar 

  41. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ziats NP, Miller KM, Anderson JM (1988) In vitro and in vivo interactions of cells with biomaterials. Biomaterials 9(1):5–13

    Article  CAS  PubMed  Google Scholar 

  43. Saika S, Miyamoto T, Ohnishi Y (2003) Histology of anterior capsule opacification with a polyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to poly(methyl methacrylate), silicone, and acrylic lenses. J Cataract Refract Surg 29(6):1198–1203

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuya Saika M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Miyamoto, T., Ishikawa, N., Shirai, K., Kitano-Izutani, A., Tanaka, Si., Saika, S. (2014). Histology of Posterior Capsular Opacification. In: Saika, S., Werner, L., Lovicu, F. (eds) Lens Epithelium and Posterior Capsular Opacification. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54300-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54300-8_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54299-5

  • Online ISBN: 978-4-431-54300-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics