Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 653 Accesses

Abstract

A thermoelectric effect finds versatile applications in technologies for energy issues and sustained efforts have been made to explore higher-performance thermoelectric materials. In particular, transition-metal oxides with strong electron correlation have attracted much attention as the promising candidates. One possible important factor for the enhanced thermopower is suggested to be the configurational entropy term as represented in Heikes formula. However, it is still under debate whether the entropy term becomes dominant at merely a few or several hundred kelvin. In this chapter, we report a systematic investigation on the high-temperature thermoelectric response in a typical filling-control Mott transition system La\(_{1-\mathrm{{x}}}\)Sr\(_{\mathrm{{x}}}\)VO\(_{3}\). In the vicinity of the Mott transition, incoherent charge transport appears with increasing temperature and the thermopower undergoes two essential crossovers, asymptotically approaching the two Heikes-formula limit values. We show that the thermopower in the Mott critical state mainly measures the entropy per charge carrier that depends on electronic degrees of freedom. Our findings verify that the Heikes formula is indeed applicable to the real correlated electron-systems at practical temperatures (T > 200 K).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These phase transitions themselves are irrelevant to the thermopower crossovers discussed in the following section, observed at about \({\sim }200\) K over a wide doping range (\(0.14<x<0.30\)).

  2. 2.

    In reality, also the effective electron correlation strength and the detailed electronic structure change with doping in the filling-control Mott transition systems, and then its variation may affect more detailed thermopower behaviors. For example, below \(x=0.16\) the asymptotical approach to \(S_2\) seems to appear from lower temperature region, which cannot be reproduced by the following simple model calculation. Advanced calculation based on the real electronic structure including the multi-orbital feature may explain such detailed behaviors.

  3. 3.

    In the strong correlation limit where \(U/W\) approaches infinity, the Seebeck coefficient does not show the next asymptotic approach to the other limit value \(S_2\). Thermopower behaviors close to this situation can be confirmed in the doping variation of the thermopower calculated for \(U/W = 4.0\) as shown in Fig. 3.3.

References

  1. Mahan G, Sales B, Sharp J (1997) Phys Today 50(3):42

    Article  Google Scholar 

  2. Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685

    Article  ADS  Google Scholar 

  3. Lee M, Viciu L, Li L, Wang Y, Foo ML, Watauchi S, Pascal RA Jr, Cava RJ, Ong NP (2006) Nat Mater 5:537

    Article  ADS  Google Scholar 

  4. Koshibae W, Tsutsui K, Maekawa S (2000) Phys Rev B 62:6869

    Article  ADS  Google Scholar 

  5. Koshibae W, Maekawa S (2001) Phys Rev Lett 87:236603

    Article  ADS  Google Scholar 

  6. Maekawa S, Tohyama T, Barnes SE, Ishihara S, Koshibae W, Khaliullin G (2004) Physics of transition metal oxides. Springer, Berlin

    Book  Google Scholar 

  7. Wang Y, Rogado NS, Cava RJ, Ong NP (2003) Nature 423:425

    Article  ADS  Google Scholar 

  8. Pálsson G, Kotliar G (1998) Phys Rev Lett 80:4775

    Article  ADS  Google Scholar 

  9. Heikes RR, Ure RW (1961) Thermoelectricity: science and engineering. Interscience, New York

    Google Scholar 

  10. Chaikin PM, Beni G (1976) Phys Rev B 13:647

    Article  ADS  Google Scholar 

  11. Singh DJ (2000) Phys Rev B 61:13397

    Article  ADS  Google Scholar 

  12. Takeuchi T, Kondo T, Takami T, Takahashi H, Ikuta H, Mizutani U, Soda K, Funahashi R, Shikano M, Mikami M, Tsuda S, Yokoya T, Shin S, Muro T (2004) Phys Rev B 69:125410

    Article  ADS  Google Scholar 

  13. Kuroki K, Arita R (2007) J Phys Soc Jpn 76:083707

    Article  ADS  Google Scholar 

  14. Matsuo M, Okamoto S, Koshibae W, Mori M, Maekawa S (2011) Phys Rev B 84:153107

    Article  ADS  Google Scholar 

  15. Beni G (1974) Phys Rev B 10:2186

    Article  ADS  Google Scholar 

  16. Pruschke Th, Jarrell M, Freericks JK (1995) Adv Phys 44:187

    Article  ADS  Google Scholar 

  17. Merino J, McKenzie RH (2000) Phys Rev B 61:7996

    Google Scholar 

  18. Oudovenko VS, Kotliar G (2002) Phys Rev B 65:075102

    Article  ADS  Google Scholar 

  19. Miyasaka S, Okuda T, Tokura Y (2000) Phys Rev Lett 85:5388

    Article  ADS  Google Scholar 

  20. Imada M, Fujimori A, Tokura Y (1998) Rev Mod Phys 70:1039

    Article  ADS  Google Scholar 

  21. Mott NF (1990) Metal-insulator transitions. Taylor and Francis, London

    Google Scholar 

  22. Inaba F, Arima T, Ishikawa T, Katsufuji T, Tokura Y (1995) Phys Rev B 52:R2221

    Article  ADS  Google Scholar 

  23. Zubkov VG, Bazuev GV, Perelyaev VA, Shveiken GP (1973) Sov Phys Solid State 15:1079

    Google Scholar 

  24. Mahajan AV, Johnston DC, Torgeson DR, Borsa F (1992) Phys Rev B 46:10966

    Article  ADS  Google Scholar 

  25. Bordet P, Chaillout C, Marezio M, Huang Q, Santoro A, Cheong SW, Takagi H, Oglesby CS, Batlogg B (1993) J Solid State Chem 106:253

    Article  ADS  Google Scholar 

  26. Miyasaka S, Okimoto Y, Iwama M, Tokura Y (2003) Phys Rev B 68:100406(R)

    Google Scholar 

  27. Dougier P, Hagenmuller P (1975) J Solid State Chem 15:158

    Article  ADS  Google Scholar 

  28. Mahajan AV, Johnston DC, Torgeson DR, Borsa F (1992) Phys Rev B 46:10973

    Article  ADS  Google Scholar 

  29. Fujioka J, Miyasaka S, Tokura Y (2006) Phys Rev Lett 97:196401

    Article  ADS  Google Scholar 

  30. Miyasaka S, Okimoto Y, Tokura Y (2002) J Phys Soc Jpn 71:2086

    Article  ADS  Google Scholar 

  31. Hasan MZ, Chuang Y-D, Qian D, Li YW, Kong Y, Kuprin A, Fedorov AV, Kimmerling R, Rotenberg E, Rossnagel K, Hussain Z, Koh H, Rogado NS, Foo ML, Cava RJ (2004) Phys Rev Lett 92:246402

    Article  ADS  Google Scholar 

  32. Valla T, Valla T, Johnson PD, Yusof Z, Wells B, Li Q, Loureiro SM, Cava RJ, Mikami M, Mori Y, Yoshimura M, Sasaki T (2002) Nature 417:627

    Article  ADS  Google Scholar 

  33. Brinkman WF, Rice TM (1970) Phys Rev B 2:4302

    Article  ADS  Google Scholar 

  34. Ishida Y, Ohta H, Fujimori A, Hosono H (2007) J Phys Soc Jpn 76:103709

    Article  ADS  Google Scholar 

  35. Haule K, Kotliar G (2009) In: Zlatić V, Hewson AC (eds) Properties and applications of thermoelectric materials. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Uchida .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Uchida, M. (2013). Charge Dynamics and Thermoelectricity in a Typical System. In: Spectroscopic Study on Charge-Spin-Orbital Coupled Phenomena in Mott-Transition Oxides. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54297-1_3

Download citation

Publish with us

Policies and ethics