Skip to main content

Insect–Plant Interactions in Plant-based Community/Ecosystem Genetics

  • Chapter
  • First Online:
Species Diversity and Community Structure

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

Abstract

Plant traits are fundamental for characterize population, community, and ecosystem properties in a terrestrial ecosystem. Recently, there is increasing evidence that genetically controlled plant traits play an important role in determining community structure and ecosystem processes (i.e., community/ecosystem genetics). On the other hand, we should recognize that herbivores modify plant traits and greatly influence their impacts in determining such community and ecosystem properties through direct and indirect interactions. Here, we review the accumulated knowledge of community/ecosystem genetics, and highlight how herbivores are important for modifying the community and ecosystem consequences of genetically controlled plant traits. Our review clearly illustrates that genetically controlled and plastically modified characteristics of plants are undoubtedly important determinants of community and ecosystem properties. In particular, most such plant traits that influence community and ecosystem properties are related to antiherbivore defense. Therefore, not only genetically controlled defensive traits of plants but also plastically modified defensive traits should be taken into consideration to understand the evolution of antiherbivore defensive traits of plants in community and ecosystem contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Agrawal AA (1998) Induced responses to herbivory and increased plant performance. Science 279:1201

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA (2000) Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89:493–500

    Article  Google Scholar 

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA (2006) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Agrawal AA (2011) Current trends in the evolutionary ecology of plant defense. Funct Ecol 25:420–432

    Article  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  • Agrawal AA, Strauss SY, Stout MJ (1999) Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution 53:1093–1104

    Article  Google Scholar 

  • Agrawal AA, Conner JK, Johnson MTJ, Wallsgrove R (2002) Ecological genetics of an induced plant defense against herbivores: additive genetic variance and costs of phenotypic plasticity. Evolution 56:2206–2213

    PubMed  Google Scholar 

  • Alborn H, Turlings T, Jones T, Stenhagen G, Loughrin J, Tumlinson J (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945

    Article  CAS  Google Scholar 

  • Anderson JT, Mitchell-Olds T (2011) Ecological genetics and genomics of plant defenses: evidence and approaches. Funct Ecol 25:312–324

    Article  PubMed  Google Scholar 

  • Ando Y, Ohgushi T (2008) Ant-and plant-mediated indirect effects induced by aphid colonization on herbivorous insects on tall goldenrod. Popul Ecol 50:181–189

    Article  Google Scholar 

  • Ando Y, Utsumi S, Ohgushi T (2011a) Community-wide impact of an exotic aphid on introduced tall goldenrod. Ecol Entomol 36:643–653

    Article  Google Scholar 

  • Ando Y, Utsumi S, Craig TP, Itami J, Ohgushi T (2011b) How are arthropod communities organized on an introduced plant Solidago altissima? J Plant Interac 6:169–170

    Article  Google Scholar 

  • Bailey JK, Schweitzer JA, Rehill BJ, Lindroth RL, Martinsen GD, Whitham TG (2004) Beavers as molecular genetics: a genetic basis to the foraging of an ecosysten engineer. Ecology 85:603–608

    Article  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages. Oxford University Press, New York

    Google Scholar 

  • Beaton LL, van Zandt PA, Esselman EJ, Knight TM (2011) Comparison of the herbivore defense and competitive ability of ancestral and modern genotypes of an invasive plant, Lespedeza cuneata. Oikos 120:1413–1419

    Article  Google Scholar 

  • Bingham RA, Agrawal AA (2010) Specificity and trade-offs in the induced plant defence of common milkweed Asclepias syriaca to two lepidopteran herbivores. J Ecol 98:1014–1022

    Article  Google Scholar 

  • Bryant JP, Chapin FS, Klein B (1983) Carbon/nutrient balance of boreal plants in relation to vertibrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–259

    Article  Google Scholar 

  • Chapman SK (2006) Herbivory differentially alters plant litter dynamics of evergreen and deciduous trees. Oikos 114:566–574

    Article  Google Scholar 

  • Chapman SK, Hart SC, Cobb NS, Whitham TG, Koch GW (2003) Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84:2867–2876

    Article  Google Scholar 

  • Clark KL, Skowronski N, Hom J (2010) Invasive insects impact forest carbon dynamics. Glob Chan Biol 16:88–101

    Article  Google Scholar 

  • Classen AT, Chapman SK, Whitham TG, Hart SC, Koch GW (2007) Genetic-based plant resistance and susceptibility traits to herbivory influence needle and root litter nutrient dynamics. J Ecol 95:1181–1194

    Article  CAS  Google Scholar 

  • Cobb NS, Whitham TG (1993) Herbivore deme formation on individual trees: a test case. Oecologia 94:496–502

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  PubMed  CAS  Google Scholar 

  • Crutsinger GM, Sanders NJ, Classen AT (2009) Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem. Basic Appl Ecol 10:535–543

    Article  Google Scholar 

  • Cyr H, Pace ML (1993) Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148–150

    Article  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity. Oxford University Press, Oxford

    Google Scholar 

  • Driebe EM, Whitham TG (2000) Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107

    Article  Google Scholar 

  • Eck G, Fiala B, Linsenmair KE, Hashim RB, Proksch P (2001) Trade-off between chemical and biotic antiherbivore defense in the south east Asian plant genus Macaranga. J Chem Ecol 27:1979–1996

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Res 30:75–115

    Article  Google Scholar 

  • English-Loeb G, Karban R, Walker MA (1998) Genotypic variation in constitutive and induced resistance in grapes against spider mite (Acari: Tetranychidae) herbivores. Environ Entomol 27:297–304

    Google Scholar 

  • Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:555–581

    Article  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Geervliet JBF, Posthumus MA, Vet LEM, Dicke M (1997) Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J Chem Ecol 23:2935–2954

    Article  CAS  Google Scholar 

  • Grime JP, Cornelissen JH, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489–494

    Article  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry. Academic, London

    Google Scholar 

  • Hartley SE, Jones TH (2004) Insect herbivores, nutrient cycling and plant productivity. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer, Berlin, pp 27–52

    Chapter  Google Scholar 

  • Hartley S, Lawton J (1987) Effects of different types of damage on the chemistry of birch foliage, and the responses of birch feeding insects. Oecologia 74:432–437

    Article  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  PubMed  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hochwender CG, Janson EM, Cha DH, Fritz RS (2005) Community structure of insect herbivores in a hybrid system: examining the effects of browsing damage and plant genetic variation. Ecol Entomol 30:170–175

    Article  Google Scholar 

  • Hunter MD (2001) Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric For Entomol 3:77–84

    Article  Google Scholar 

  • Janzen DH (1980) When is it coevolution. Evolution 34:611–612

    Article  Google Scholar 

  • Juenger T, Bergelson J (2000) The evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata: herbivore-imposed natural selection and the quantitative genetics of tolerance. Evolution 54:764–777

    PubMed  CAS  Google Scholar 

  • Kagata H, Ohgushi T (2011) Ecosystem consequences of selective feeding of an insect herbivore: palatability-decomposability relationship revisited. Ecol Entomol 36:768–775

    Article  Google Scholar 

  • Kagata H, Ohgushi T (2012) Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul Ecol 54:75–82

    Article  Google Scholar 

  • Kamata N (2002) Outbreaks of forest defoliating insects in Japan, 1950–2000. Bull Entomol Res 92:109–117

    PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kay AD, Mankowski J, Hobbie SH (2008) Long-term burning interacts with herbivory to slow decomposition. Ecology 89:1188–1194

    Article  PubMed  Google Scholar 

  • Kim S, Matuso T, Watanabe M, Watanabe Y (2002) Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci Plant Nutrit 48:43–49

    Article  CAS  Google Scholar 

  • Koricheva J, Nykänen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163:E65–E75

    Article  Google Scholar 

  • Korth KL, Dixon RA (1997) Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol 115:1299

    PubMed  CAS  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems - a review. Plant Soil 256:41–66

    Article  CAS  Google Scholar 

  • Krause SC, Raffa KF (1992) Comparison of insect, fungal, and mechanically induced defoliation of larch: effects on plant productivity and subsequent host susceptibility. Oecologia 90:411–416

    Article  Google Scholar 

  • Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  PubMed  Google Scholar 

  • Kurokawa H, Nakashizuka T (2008) Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89:2645–2656

    Article  PubMed  Google Scholar 

  • Kurokawa H, Peltzer DA, Wardle DA (2010) Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Funct Ecol 24:513–523

    Article  Google Scholar 

  • Leimu R, Koricheva J (2006) A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: combining evidence from ecological and agricultural studies. Oikos 112:1–9

    Article  Google Scholar 

  • Lin H, Kogan M, Fischer D (1990) Induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae): comparisons of inducing factors. Environ Entomol 19:1852–1857

    Google Scholar 

  • Lovett GM, Christenson LM, Groffman PM, Jones CG, Hart JE, Mitchell MJ (2002) Insect defoliation and nitrogen cycling in forests. Bioscience 52:335–341

    Article  Google Scholar 

  • McAuslane HJ, Alborn HT (1998) Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J Chem Ecol 24:399–416

    Article  CAS  Google Scholar 

  • McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435

    Article  CAS  Google Scholar 

  • McNaughton S (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336

    Article  Google Scholar 

  • Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trend Ecol Evol 20:685–692

    Article  Google Scholar 

  • Moon AM, Dyer M, Brown M, Crossley D (1994) Epidermal growth factor interacts with indole-3-acetic acid and promotes coleoptile growth. Plant Cell Physiol 35:1173

    CAS  Google Scholar 

  • Nakamura M, Miyamoto Y, Ohgushi T (2003) Gall initiation enhances the availability of food resources for herbivorous insects. Funct Ecol 17:851–857

    Article  Google Scholar 

  • Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566

    Article  Google Scholar 

  • Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst 36:81–105

    Article  Google Scholar 

  • Ohgushi T, Ando Y, Utsumi S, Craig TP (2011) Indirect interaction webs on tall goldenrod: community consequences of herbivore-induced phenotypes and genetic variation of plants. J Plant Interac 6:147–150

    Article  Google Scholar 

  • Osier TL, Hwang S, Lindroth RL (2000) Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecol Entomol 25:197–207

    Article  Google Scholar 

  • Pálková K, Leps J (2008) Positive relationship between plant palatability and litter decomposition in meadow plants. Comm Ecol 9:17–27

    Article  Google Scholar 

  • Poelman EH, Van L, Joop J, Van Nicole M, Vet LEM, Dicke M (2010) Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecol Entomol 35:240–247

    Article  Google Scholar 

  • Post DM, Palkovacs EP (2011) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phi Trans Royal Soc B 364:1629–1640

    Article  Google Scholar 

  • Power AG (1988) Leafhopper response to genetically diverse maize stands. Entomol Exp Appl 49:213–219

    Article  Google Scholar 

  • Rosenthal J, Kotanen P (1994) Terrestrial plant tolerance to herbivory. Trend Ecol Evol 9:145–148

    Article  CAS  Google Scholar 

  • Schädler M, Jung G, Auge H, Brandl R (2003) Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. Oikos 103:121–132

    Article  Google Scholar 

  • Schoonhoven LM, Jermy T, van Loon JJA (1998) Insect-plant biology. Chapman & Hall, London

    Book  Google Scholar 

  • Schweitzer JA, Bailey JK, Hart SC, Whitham TG (2005a) Nonadditive effects of mixing cottonwood genotypes on litter decomposition and nutrient dynamics. Ecology 86:2384–2840

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Hart SC, Wimp GM, Chapman SK, Whitham TG (2005b) The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 110:133–145

    Article  CAS  Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Article  Google Scholar 

  • Siegrist JA, McCulley RL, Bush LP, Phillips TD (2010) Alkaloids may not be responsible for endophyte-associated reductions in tall fescue decomposition rates. Funct Ecol 24:460–468

    Article  Google Scholar 

  • Silfver T, Mikola J, Rousi M, Roininen H, Oksanen E (2007) Leaf litter decomposition differs among genotypes in a local Betula pendula population. Oecologia 152:707–714

    Article  PubMed  Google Scholar 

  • Silva LVB, Vasconcelos HL (2011) Plant palatability to leaf-cutter ants (Atta laevigata) and litter decomposability in a Neotropical woodland savanna. Aust Ecol 36:504–510

    Article  Google Scholar 

  • Simms EL (1992) Costs of plant resistance to herbivores. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. Ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 392–425

    Google Scholar 

  • Snoeren TAL, Kappers IF, Broekgaarden C, Mumm R, Dicke M, Bouwmeester HJ (2010) Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. J Exp Bot 61:3041–3056

    Article  PubMed  CAS  Google Scholar 

  • Stadler B, Mühlenberg E, Michalzik B (2004) The Ecology driving nutrient fluxes in forests. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer, Berlin, pp 213–239

    Chapter  Google Scholar 

  • Stevens JF, Hart HT, van Ham RCHJ, Elema ET, van den Ent MMVX, Wildeboer M, Zwaving JH (1995) Distribution of alkaloids and tannins in the Crassulaceae. Biochem Syst Ecol 23:157–165

    Article  CAS  Google Scholar 

  • Steward JL, Keeler KH (1988) Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)? Oikos 53:79–86

    Article  Google Scholar 

  • Stout MJ, Brovont RA, Duffey SS (1998) Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J Chem Ecol 24:945–963

    Article  CAS  Google Scholar 

  • Stowe KA, Marquis RJ, Hochwender CG, Simms EL (2000) The evolutionary ecology of tolerance to consumer damage. Annu Rev Ecol Syst 31:565–595

    Article  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    Article  PubMed  Google Scholar 

  • Strauss SY, Sahli H, Conner JK (2005) Toward a more trait-centered approach to diffuse (co)evolution. New Phytol 165:81–89

    Article  PubMed  Google Scholar 

  • Tétard-Jones C, Kertesz MA, Gallois P, Preziosi RF (2007) Genotype-by-genotype interactions modified by a third species in a plant-insect system. Am Nat 170:492–499

    Article  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Turlings T, Loughrin JH, McCall PJ, Röse U, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Nat Acad Sci USA 92:4169

    Article  PubMed  CAS  Google Scholar 

  • Twigg LE, Socha LV (1996) Physical versus chemical defence mechanisms in toxic Gasrolobium. Oecologia 108:21–28

    Article  Google Scholar 

  • Underwood N, Morris W, Gross K, Lockwood JR (2000) Induced resistance to Mexican bean beetles in soybean: variation among genotypes and lack of correlation with constitutive resistance. Oecologia 122:83–89

    Article  Google Scholar 

  • Utsumi S (2011) Eco-evolutionary dynamics in herbivorous insect communities mediated by induced plant responses. Popul Ecol 53:23–34

    Article  Google Scholar 

  • Utsumi S, Ohgushi T (2007) Plant regrowth response to a stem-boring insect: a swift moth-willow system. Popul Ecol 49:241–248

    Article  Google Scholar 

  • Utsumi S, Ohgushi T (2009) Community-wide impacts of herbivore-induced plant regrowth on arthropods in a multi-willow species system. Oikos 118:1805–1815

    Article  Google Scholar 

  • Utsumi S, Nakamura M, Ohgushi T (2009) Community consequences of herbivore-induced bottom-up trophic cascades: the importance of resource heterogeneity. J Anim Ecol 78:953–963

    Article  PubMed  Google Scholar 

  • Utsumi S, Ando Y, Miki T (2010) Linkages among trait-mediated indirect effects: a new framework for the indirect interaction web. Popul Ecol 58:1–13

    Google Scholar 

  • Utsumi S, Ando Y, Craig TP, Ohgushi T (2011) Plant genotypic diversity increases population size of a herbivorous insect. Proc Royal Soc B 278:3108–3115

    Article  Google Scholar 

  • van Dam NM, Vrieling K (1994) Genetic variation in constitutive and inducible pyrrolizidine alkaloid levels in Cynoglossum officinale L. Oecologia 99:374–378

    Article  Google Scholar 

  • Van Zandt PA, Agrawal AA (2004) Community-wide impacts of herbivore-induced plant responses in milkweed (Asclepias syriaca). Ecology 85:2616–2629

    Article  Google Scholar 

  • Whitham TG, Mopper S (1985) Chronic herbivory: impacts on architecture and sex expression of pinyon pine. Science 228:1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  • Zangerl AR, Berenbaum MR (1990) Furanocoumarin induction in wild parsnip: genetics and population variation. Ecology 71:1933–1940

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sota, T., Kagata, H., Ando, Y., Utsumi, S., Osono, T. (2014). Insect–Plant Interactions in Plant-based Community/Ecosystem Genetics. In: Species Diversity and Community Structure. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54261-2_2

Download citation

Publish with us

Policies and ethics