Skip to main content

Violation of the Rotational Invariance in the CMB Bispectrum

  • Chapter
  • First Online:
Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum

Part of the book series: Springer Theses ((Springer Theses))

  • 582 Accesses

Abstract

There have been many works that verify the possibility of the small deviation of the statistical isotropy, e.g., the so-called “Axis of Evil”. The analyses of the power spectrum by employing the current CMB data suggest that the deviation of the statistical isotropy is about 10 % at most. As is well known, it might be difficult to explain such statistical anisotropy in the standard inflationary scenario. However, recently, there have been several works about the possibility of generating the statistically anisotropic primordial density fluctuations in order to introduce nontrivial dynamics of the vector field. Owing to the effect of fluctuations of the vector field, the primordial density fluctuations may have a small deviation from the statistical isotropy and also the deviation from the Gaussian statistics. Hence, we can expect that there are characteristic signals not only in the CMB power spectrum but also in the CMB bispectrum. With these motivations, we calculate the CMB statistically anisotropic bispectrum sourced from the curvature perturbations generated in the modified hybrid inflation scenario. Then, we find the peculiar configurations of the multipoles which never appear in the isotropic bispectrum, like off-diagonal components in the CMB power spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This \(\zeta \) is consistent with \({\fancyscript{R}}\) in Eq. (2.40).

  2. 2.

    Owing to this treatment, we can use the quantities estimated in the Coulomb gauge as Eq. (7.12). In a more precise discussion, we should take into account the contribution of the longitudinal mode in the unitary gauge.

References

  1. N.E. Groeneboom, H.K. Eriksen, Astrophys. J. 690, 1807 (2009). doi:10.1088/0004-637X/690/2/1807

  2. N.E. Groeneboom, L. Ackerman, I.K. Wehus, H.K. Eriksen, Astrophys. J. 722, 452 (2010). doi:10.1088/0004-637X/722/1/452

  3. M. Frommert, T.A. Enßlin, Mon. Not. Roy. Astron. Soc. 403, 1739 (2010). doi:10.1111/j.1365-2966.2010.16255.x

  4. D. Hanson, A. Lewis, Phys. Rev. D80, 063004 (2009). doi:10.1103/PhysRevD.80.063004

  5. C.L. Bennett, et al., Astrophys. J. Suppl. 192, 17 (2011). doi:10.1088/0067-0049/192/2/17

  6. D. Hanson, A. Lewis, A. Challinor, Phys. Rev. D81, 103003 (2010). doi:10.1103/PhysRevD.81.103003

  7. L. Ackerman, S.M. Carroll, M.B. Wise, Phys. Rev. D75, 083502 (2007). doi:10.1103/PhysRevD.75.083502

  8. C.G. Boehmer, D.F. Mota, Phys. Lett. B663, 168 (2008). doi:10.1016/j.physletb.2008.04.008

  9. Y. Shtanov, H. Pyatkovska, Phys. Rev. D80, 023521 (2009). doi:10.1103/PhysRevD.80.023521

  10. M.a. Watanabe, S. Kanno, J. Soda, Mon. Not. Roy. Astron. Soc. 412, L83 (2011). doi: 10.1111/j.1745-3933.2011.01010.x

  11. A. Gumrukcuoglu, B. Himmetoglu, M. Peloso, Phys. Rev. D81, 063528 (2010). doi:10.1103/PhysRevD.81.063528

  12. K. Dimopoulos, Phys. Rev. D74, 083502 (2006). doi:10.1103/PhysRevD.74.083502

  13. T. Koivisto, D.F. Mota, JCAP 0808, 021 (2008). doi:10.1088/1475-7516/2008/08/021

  14. S. Yokoyama, J. Soda, JCAP 0808, 005 (2008). doi:10.1088/1475-7516/2008/08/005

  15. K. Dimopoulos, M. Karciauskas, D.H. Lyth, Y. Rodriguez, JCAP 0905, 013 (2009). doi:10.1088/1475-7516/2009/05/013

  16. M. Karciauskas, K. Dimopoulos, D.H. Lyth, Phys. Rev. D80, 023509 (2009). doi:10.1103/PhysRevD.80.023509

  17. N. Bartolo, E. Dimastrogiovanni, S. Matarrese, A. Riotto, JCAP 0910, 015 (2009). doi:10.1088/1475-7516/2009/10/015

  18. K. Dimopoulos, M. Karciauskas, J.M. Wagstaff, Phys. Rev. D81, 023522 (2010). doi:10.1103/PhysRevD.81.023522

  19. K. Dimopoulos, M. Karciauskas, J.M. Wagstaff, Phys. Lett. B683, 298 (2010). doi:10.1016/j.physletb.2009.12.024

  20. C.A. Valenzuela-Toledo, Y. Rodriguez, Phys. Lett. B685, 120 (2010). doi:10.1016/j.physletb.2010.01.060

  21. C.A. Valenzuela-Toledo, arXiv:1004.5363 (2010)

    Google Scholar 

  22. E. Dimastrogiovanni, N. Bartolo, S. Matarrese, A. Riotto, Adv. Astron. 2010, 752670 (2010). doi:10.1155/2010/752670

  23. K. Dimopoulos, J.M. Wagstaff, Phys. Rev. D83, 023523 (2011). doi:10.1103/PhysRevD.83.023523

  24. M. Karciauskas, JCAP 1201, 014 (2012). doi:10.1088/1475-7516/2012/01/014

  25. M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki, K. Takahashi, Prog. Theor. Phys. 125, 795 (2011). doi:10.1143/PTP.125.795

    Google Scholar 

  26. M. Shiraishi, S. Yokoyama, Prog. Theor. Phys. 126, 923 (2011). doi:10.1143/PTP.126.923

  27. A.A. Starobinsky, Phys. Lett. B117, 175 (1982). doi:10.1016/0370-2693(82)90541-X

  28. A.A. Starobinsky, JETP Lett. 42, 152 (1985)

    Google Scholar 

  29. M. Sasaki, E.D. Stewart, Prog. Theor. Phys. 95, 71 (1996). doi:10.1143/PTP.95.71

  30. M. Sasaki, T. Tanaka, Prog. Theor. Phys. 99, 763 (1998). doi:10.1143/PTP.99.763

  31. D.H. Lyth, K.A. Malik, M. Sasaki, JCAP 0505, 004 (2005). doi:10.1088/1475-7516/2005/05/004

  32. D.H. Lyth, Y. Rodriguez, Phys. Rev. Lett. 95, 121302 (2005). doi:10.1103/PhysRevLett.95.121302

    Google Scholar 

  33. J. Martin, J. Yokoyama, JCAP 0801, 025 (2008). doi:10.1088/1475-7516/2008/01/025

  34. A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473 (2000). doi:10.1086/309179

  35. A. Lewis, Phys. Rev. D70, 043011 (2004). doi:10.1103/PhysRevD.70.043011

  36. Slatec common mathematical library. http://www.netlib.org/slatec/

  37. The Planck Collaboration, arXiv:astro-ph/0604069 (2006)

    Google Scholar 

  38. E. Komatsu, et al., Astrophys. J. Suppl. 192, 18 (2011). doi:10.1088/0067-0049/192/2/18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maresuke Shiraishi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Shiraishi, M. (2013). Violation of the Rotational Invariance in the CMB Bispectrum. In: Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54180-6_7

Download citation

Publish with us

Policies and ethics