Skip to main content

Haptic Interface and Cybernics

  • Chapter
  • First Online:
Cybernics
  • 1368 Accesses

Abstract

This chapter presents work carried out in projects to develop haptic technologies, including finger/hand manipulation and locomotion. It is well known that the sense of touch is indispensable for understanding the real world. The last decade has seen significant advances in the development of haptic interfaces. Nevertheless, methods for implementing haptic interfaces are still in the trial-and-error stages. Compared with visual and auditory displays, haptic interfaces are not frequently used in everyday life. This paper introduces some of the issues and solutions with regard to haptic interfaces identified in the past 18 years of research conducted by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iwata H (1990) Artificial reality with force-feedback: development of desktop virtual space with compact master manipulator. ACM SIGGRAPH Comput Graph 24(4)

    Google Scholar 

  2. Burdea G, Zhuang J, Roskos E, Silver D, Langlana L (1992) A portable dextrous master with force feedback., Presence 1(1)

    Google Scholar 

  3. Iwata H (1993) Pen-based Haptic virtual environment. In Proceedings of IEEE VRAIS’93

    Google Scholar 

  4. Iwata H (1994) Desktop force display. In: SIGGRAPH 94 Visual Proceedings

    Google Scholar 

  5. Massie T, Salisbury K (1994) The PHANToM haptic interface: a device for probing virtual objects. In: ASME Winter Annual Meeting, DSC-Vol. 55–1

    Google Scholar 

  6. Tachi S et al (1994) A construction method of virtual haptic space. In: Proceedings of ICAT’94

    Google Scholar 

  7. McNeely W (1993) Robotic graphics: a new approach to force feedback for virtual reality. In: Proceedings of IEEE VRAIS’93

    Google Scholar 

  8. Hirota K, Hirose M (1996) Simulation and presentation of curved surface in virtual reality environment through surface display. In: Proceedings of IEEE VRAIS’96

    Google Scholar 

  9. Murakami T, Nakajima N (1994) Direct and intuitive input device for 3D shape deformation. In: ACM CHI 1994, Conference on human factors in computing systems, pp 465–470

    Google Scholar 

  10. Sinclair M (1997) The haptic lens. In: SIGGRAPH 97 visual proceedings, p 179

    Google Scholar 

  11. Iwata H, Fujii T (1996) Virtual Perambulator: a novel interface device for locomotion in virtual environment. In: Proceedings of IEEE 1996 virtual reality annual international symposium, pp 60–65

    Google Scholar 

  12. Iwata H (1990) Artificial reality for walking about large scale virtual space. Hum Interface News Rep 5(1):49–52 (in Japanese)

    MathSciNet  Google Scholar 

  13. Brooks FP Jr (1986) A dynamic graphics system for simulating virtual buildings. In: Proceedings of the 1986 workshop on interactive 3D graphics, Chapel Hill, NC. ACM, New York, pp 9–21

    Google Scholar 

  14. Noma H, Sugihara T, Miyasato (2000) Development of ground surface simulator for Tel-E-Merge system. In: Proceedings of IEEE virtual reality 2000, pp 217–224

    Google Scholar 

  15. Christensen R, Hollerbach JM, Xu Y, Meek S (1998) Inertial force feedback for a locomotion interface. In: Proceedings ASME Dynamic Systems and Control Division, DSC-Vol 64, pp 119–126

    Google Scholar 

  16. Darken R, Cockayne W, Carmein D (1997) The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of UIST’97

    Google Scholar 

  17. Poston R et al (1997) A whole body kinematic display for virtual reality applications. In: Proceedings of the IEEE international conference on robotics and automation, pp 3006–3011

    Google Scholar 

  18. Pratt DR et al (1994) Insertion of an articulated human into a networked virtual environment. In: Proceedings of the 1994 AI, simulation, and planning in high autonomy systems conference, pp 7–9

    Google Scholar 

  19. Slater M et al (1994) Steps and ladders in virtual reality. In: Virtual reality technology, World Scientific Publication, pp 45–54

    Google Scholar 

  20. Kontarinis DA, Howe RD (1995) Tactile display of vibratory information in teleoperation and virtual environment. Presence 4(4):387–402

    Google Scholar 

  21. Minsky M, Lederman SJ (1997) Simulated haptic textures: roughness. In: Symposium on haptic interfaces for virtual environment and teleoperator systems, Proceedings of the ASME Dynamic Systems and Control Division, DSC-Vol 58

    Google Scholar 

  22. Moy G, Wagner C, Fearing RS (2000) A compliant tactile display for teletaction. In: IEEE international conference on robotics and automation, April

    Google Scholar 

  23. Kawai Y, Tomita F (2000) A support system for the visually impaired to recognize three-dimensional objects. Technol Disabil 12(1):13–20

    Google Scholar 

  24. Burdea GC (1996) Force and touch feedback for virtual reality. Wiley, New York

    Google Scholar 

  25. Asanuma N, Yokoyama N, Shinoda H (1999) A method of selective stimulation to epidermal skin receptors for realistic touch feedback. In: Proceedings of IEEE virtual reality’99, pp 274–281

    Google Scholar 

  26. Kajimoto H, Kawakami N, Maeda T, Tachi S (1999) Tactile feeling display using functional electrical stimulation. In: Proceedings of ICAT’99, pp 107–114

    Google Scholar 

  27. Iwata H (1999) Walking about virtual space on an infinite floor. In: Proceedings of IEEE virtual reality’99, pp 236–293

    Google Scholar 

  28. Iwata H, Yoshida Y (1999) Path reproduction tests using a Torus Treadmill. Presence 8(6):587–597

    Article  Google Scholar 

  29. Yano H, Masuda T, Nakajima Y, Tanaka N, Tamefusa S, Saitou H, Iwata H (2008) Development of a gait rehabilitation system with a spherical immersive projection display. J Robot Mech 12(6):836–845

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroo Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Iwata, H. (2014). Haptic Interface and Cybernics. In: Sankai, Y., Suzuki, K., Hasegawa, Y. (eds) Cybernics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54159-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54159-2_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54158-5

  • Online ISBN: 978-4-431-54159-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics