Skip to main content

Hormonal Modulation of Aggression: With a Focus on Teleost Studies

  • Chapter
  • First Online:
Emotions of Animals and Humans

Part of the book series: The Science of the Mind ((The Science of the Mind))

  • 2616 Accesses

Abstract

Aggression is one of the important emotional behaviors displayed by animals while acquiring and/or defending resources. Recent studies have revealed that peptide hormones modulate various social behaviors, including aggression, among vertebrates. Comparison among teleosts, birds, and rodents shows marked species differences in effects of peptides on aggression. A correlation between peptide function and social structure has been suggested to explain these differences; however, the species differences reported in part might also be due to the methodological differences among the studies. In teleosts, the action sites for peptide ­hormones in modulating aggression are unclear, because in most behavioral studies these peptide hormones were administered systemically rather than locally. This chapter reviews the modulatory actions of peptide hormones, with particular emphasis on the known action sites for peptide hormones in teleosts. Further studies are necessary to precisely determine localized peptide modulation of aggression in teleosts, as well as to compare its modulatory effects among vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers EH, Dean A, Karom MC, Smith D, Huhman KL (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Res 1073:425–430

    PubMed  Google Scholar 

  • Backström T, Winberg S (2009) Arginine-vasotocin influence on aggressive behavior and dominance in rainbow trout. Physiol Behav 96:470–475

    PubMed  Google Scholar 

  • Baerends GP, Baerends-van Roon JM (1950) An introduction to the study of the ethology of the cichlid fishes. Behaviour Supplement 1:1–243

    Google Scholar 

  • Barlow GW (2000) The cichlid fishes: nature’s grand experiment in evolution. Perseus Publishing, Cambridge

    Google Scholar 

  • Bass AH, Marchaterre MA, Baker R (1994) Vocal-acoustic pathways in a teleost fish. J Neurosci 14:4025–4039

    PubMed  CAS  Google Scholar 

  • Bastian J, Schniederjan S, Nguyenkim J (2001) Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. J Exp Biol 204:1909–1923

    PubMed  CAS  Google Scholar 

  • Batten TFC, Cambre ML, Moons L, Vandesande F (1990) Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J Comp Neurol 302:893–919

    PubMed  CAS  Google Scholar 

  • Beiderbeck DI, Neumann ID, Veenema AH (2007) Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety. Eur J Neurosci 26:3597–3605

    PubMed  Google Scholar 

  • Bennett MB, Rankin JC (1986) The effects of neurohypophysial hormones on the vascular resistance of the isolated perfused gill of the European eel, Anguilla anguilla L. Gen Comp Endocrinol 64:60–66

    PubMed  CAS  Google Scholar 

  • Bester-Meredith JK, Marler CA (2001) Vasopressin and aggression in cross-fostered California mice (Peromyscus californicus) and white-footed mice (Peromyscus leucopus). Horm Behav 40:51–64

    PubMed  CAS  Google Scholar 

  • Bester-Meredith JK, Young LJ, Marler CA (1999) Species differences in paternal behavior and aggression in Peromyscus and their associations with vasopressin immunoreactivity and receptors. Horm Behav 36:25–38

    PubMed  CAS  Google Scholar 

  • Bester-Meredith JK, Martin PA, Marler CA (2005) Manipulations of vasopressin alter aggression differently across testing conditions in monogamous and non-monogamous Peromyscus mice. Aggress Behav 31:189–199

    CAS  Google Scholar 

  • Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25:6807–6815

    PubMed  CAS  Google Scholar 

  • Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology, vol 2. University of Michigan Press, Ann Arbor, pp 117–163

    Google Scholar 

  • Bronstein PM, Brain PF (1991) Successful prediction of dominance in convict cichlids, Cichlasoma nigrofasciatum. Bull Psychonom Soc 29:455–456

    Google Scholar 

  • Bshary R, Wickler W, Fricke H (2002) Fish cognition: a primate’s eye view. Anim Cogn 5:1–13

    PubMed  Google Scholar 

  • Cheng SY, Delville Y (2009) Vasopressin facilitates play fighting in juvenile golden hamsters. Physiol Behav 98:242–246

    PubMed  CAS  Google Scholar 

  • Cooper MA, Karom M, Huhman KL, Elliott Albers H (2005) Repeated agonistic encounters in hamsters modulate AVP V1a receptor binding. Horm Behav 48:545–551

    PubMed  CAS  Google Scholar 

  • Davis RE, Kassel J, Schwagmeyer P (1976) Telencephalic lesions and behavior in the teleost, Macropodus opercularis: reproduction, startle reaction, and operant behavior in the male. Behav Biol 18:165–177

    PubMed  CAS  Google Scholar 

  • Delville Y, Mansour KM, Ferris CF (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiol Behav 60:25–29

    PubMed  CAS  Google Scholar 

  • Demski LS, Knigge KM (1971) The telencephalon and hypothalamus of the bluegill (Lepomis macrochirus): evoked feeding, aggressive and reproductive behavior with representative frontal sections. J Comp Neurol 143:1–16

    PubMed  CAS  Google Scholar 

  • Demski LS, Bauer DH, Gerald JW (1975) Sperm release evoked by electrical stimulation of the fish brain: a functional-anatomical study. J Exp Zool 191:215–231

    PubMed  CAS  Google Scholar 

  • Dewan AK, Maruska KP, Tricas TC (2008) Arginine vasotocin neuronal phenotypes among congeneric territorial and shoaling reef butterflyfishes: species, sex and reproductive season comparisons. J Neuroendocrinol 20:1382–1394

    PubMed  CAS  Google Scholar 

  • Dobberfuhl AP, Ullmann JFP, Shumway CA (2005) Visual acuity, environmental complexity, and social organization in African cichlid fishes. Behav Neurosci 119:1648

    PubMed  Google Scholar 

  • Enquist M, Leimar O (1983) Evolution of fighting behaviour: decision rules and assessment of relative strength. J Theor Biol 102:387–410

    Google Scholar 

  • Enquist M, Leimar O, Ljungberg T, Mallner Y, Segerdahl N (1990) A test of the sequential assessment game: fighting in the cichlid fish Nannacara anomala. Anim Behav 40:1–14

    Google Scholar 

  • Everts HGJ, De Ruiter AJH, Koolhaas JM (1997) Differential lateral septal vasopressin in wild-type rats: correlation with aggression. Horm Behav 31:136–144

    PubMed  CAS  Google Scholar 

  • Ferris CF, Delville Y (1994) Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology 19:593–601

    PubMed  CAS  Google Scholar 

  • Ferris CF, Potegal M (1988) Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav 44:235–239

    PubMed  CAS  Google Scholar 

  • Ferris CF, Melloni RH Jr, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331

    PubMed  CAS  Google Scholar 

  • Ferris CF, Lu S, Messenger T, Guillon CD, Heindel N, Miller M et al (2006) Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol Biochem Behav 83:169–174

    PubMed  CAS  Google Scholar 

  • Fisher J (1954) Evolution and bird sociality. In: Huxley J, Hardy AC, Ford FB (eds) Evolution as a process. G. Allen & Unwin, London, pp 71–83

    Google Scholar 

  • Foran CM, Bass AH (1998) Preoptic AVT immunoreactive neurons of a teleost fish with alternative reproductive tactics. Gen Comp Endocrinol 111:271–282

    PubMed  CAS  Google Scholar 

  • Fricke HW (1973) Individual partner recognition in fish: field studies on Amphiprion bicinctus. Naturwissenschaften 60:204–205

    PubMed  CAS  Google Scholar 

  • Gill VE, Burford GD, Lederis K, Zimmerman EA (1977) An immunocytochemical investigation for arginine vasotocin and neurophysin in the pituitary gland and the caudal neurosecretory system of Catostomus commersoni. Gen Comp Endocrinol 32:505–511

    PubMed  CAS  Google Scholar 

  • Goodson JL (1998a) Territorial aggression and dawn song are modulated by septal vasotocin and vasoactive intestinal polypeptide in male field sparrows (Spizella pusilla). Horm Behav 34:67–77

    PubMed  CAS  Google Scholar 

  • Goodson JL (1998b) Vasotocin and vasoactive intestinal polypeptide modulate aggression in a territorial songbird, the violet-eared waxbill (Estrildidae: Uraeginthus granatina). Gen Comp Endocrinol 111:233–244

    PubMed  CAS  Google Scholar 

  • Goodson JL, Adkins-Regan E (1999) Effect of intraseptal vasotocin and vasoactive intestinal polypeptide infusions on courtship song and aggression in the male zebra finch (Taeniopygia guttata). J Neuroendocrinol 11:19–25

    PubMed  CAS  Google Scholar 

  • Goodson JL, Bass AH (2000a) Forebrain peptides modulate sexually polymorphic vocal circuitry. Nature 403:769–772

    PubMed  CAS  Google Scholar 

  • Goodson JL, Bass AH (2000b) Vasotocin innervation and modulation of vocal-acoustic circuitry in the teleost Porichthys notatus. J Comp Neurol 422:363–379

    PubMed  CAS  Google Scholar 

  • Goodson JL, Bass AH (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Rev 35:246–265

    PubMed  CAS  Google Scholar 

  • Goodson JL, Bass AH (2002) Vocal-acoustic circuitry and descending vocal pathways in teleost fish: convergence with terrestrial vertebrates reveals conserved traits. J Comp Neurol 448:298–322

    PubMed  Google Scholar 

  • Goodson JL, Evans AK (2004) Neural responses to territorial challenge and nonsocial stress in male song sparrows: segregation, integration, and modulation by a vasopressin V1 antagonist. Horm Behav 46:371–381

    PubMed  CAS  Google Scholar 

  • Goodson JL, Wang Y (2006) Valence-sensitive neurons exhibit divergent functional profiles in gregarious and asocial species. Proc Natl Acad Sci USA 103:17013–17017

    PubMed  CAS  Google Scholar 

  • Goodson JL, Evans AK, Bass AH (2003) Putative isotocin distributions in sonic fish: relation to vasotocin and vocal-acoustic circuitry. J Comp Neurol 462:1–14

    PubMed  Google Scholar 

  • Goodson JL, Lindberg L, Johnson P (2004) Effects of central vasotocin and mesotocin manipulations on social behavior in male and female zebra finches. Horm Behav 45:136–143

    PubMed  CAS  Google Scholar 

  • Goodson JL, Evans AK, Wang Y (2006) Neuropeptide binding reflects convergent and divergent evolution in species-typical group sizes. Horm Behav 50:223–236

    PubMed  CAS  Google Scholar 

  • Goodson JL, Kabelik D, Schrock SE (2009a) Dynamic neuromodulation of aggression by vasotocin: influence of social context and social phenotype in territorial songbirds. Biol Lett 5:554

    PubMed  Google Scholar 

  • Goodson JL, Rinaldi J, Kelly AM (2009b) Vasotocin neurons in the bed nucleus of the stria terminalis preferentially process social information and exhibit properties that dichotomize courting and non-courting phenotypes. Horm Behav 55:197–202

    PubMed  CAS  Google Scholar 

  • Goodson JL, Schrock SE, Klatt JD, Kabelik D, Kingsbury MA (2009c) Mesotocin and nonapeptide receptors promote estrildid flocking behavior. Science 325:862–866

    PubMed  CAS  Google Scholar 

  • Goossens N, Dierickx K, Vandesande F (1977) Immunocytochemical localization of vasotocin and isotocin in the preopticohypophysial neurosecretory system of teleosts. Gen Comp Endocrinol 32:371–375

    PubMed  CAS  Google Scholar 

  • Greenwood AK, Wark AR, Fernald RD, Hofmann HA (2008) Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. Proc R Soc Biol Sci 275:2393–2402

    Google Scholar 

  • Grober MS, George AA, Watkins KK, Carneiro LA, Oliveira RF (2002) Forebrain AVT and courtship in a fish with male alternative reproductive tactics. Brain Res Bull 57:423–425

    PubMed  CAS  Google Scholar 

  • Grosenick L, Clement TS, Fernald RD (2007) Fish can infer social rank by observation alone. Nature 445:429–432

    PubMed  CAS  Google Scholar 

  • Harmon AC, Huhman KL, Moore TO, Albers HE (2002) Oxytocin inhibits aggression in female Syrian hamsters. J Neuroendocrinol 14:963–969

    PubMed  CAS  Google Scholar 

  • Hausmann H, Meyerhof W, Zwiers H, Lederis K, Richter D (1995) Teleost isotocin receptor: structure, functional expression, mRNA distribution and phylogeny. FEBS Lett 370:227–230

    PubMed  CAS  Google Scholar 

  • Heinrichs M, Meinlschmidt G, Wippich W, Ehlert U, Hellhammer DH (2004) Selective amnesic effects of oxytocin on human memory. Physiol Behav 83:31–38

    PubMed  CAS  Google Scholar 

  • Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L et al (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61:498–503

    PubMed  CAS  Google Scholar 

  • Holmqvist BI, Ekström P (1991) Galanin like immunoreactivity in the brain of teleosts: distribution and relation to substance P, vasotocin, and isotocin in the Atlantic salmon (Salmo salar). J Comp Neurol 306:361–381

    PubMed  CAS  Google Scholar 

  • Huber R, Van Staaden MJ, Kaufman LS, Liem KF (1997) Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav Evol 50:167–182

    PubMed  CAS  Google Scholar 

  • Insel TR, Hulihan TJ (1995) A gender-specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles. Behav Neurosci 109:782–789

    PubMed  CAS  Google Scholar 

  • Kassel J, Davis RE, Schwagmeyer P (1976) Telencephalic lesions and behavior in the teleost, Macropodus opercularis: further analysis of reproductive and operant behavior in the male. Behav Biol 18:179–188

    PubMed  CAS  Google Scholar 

  • Keeley ER, Grant JWA (1993) Visual information, resource value, and sequential assessment in convict cichlid (Cichlasoma nigrofasciatum) contests. Behav Ecol 4:345–349

    Google Scholar 

  • Knight WR, Knight JN (1996) Telencephalon removal does not disrupt the vasotocin induced spawning reflex in killifish, Fundulus heteroclitus. J Exp Zool 276:296–300

    Google Scholar 

  • Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676

    PubMed  CAS  Google Scholar 

  • Kotrschal K, Van Staaden MJ, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408

    Google Scholar 

  • Koyama Y, Satou M, Oka Y, Ueda K (1984) Involvement of the telencephalic hemispheres and the preoptic area in sexual behavior of the male goldfish, Carassius auratus: a brain-lesion study. Behav Neural Biol 40:70–86

    PubMed  CAS  Google Scholar 

  • Kulczykowska E (1998) Effects of arginine vasotocin, isotocin and melatonin on blood pressure in the conscious Atlantic cod (Gadus morhua): hormonal interactions? Exp Physiol 83:809–820

    PubMed  CAS  Google Scholar 

  • Kyle AL, Peter RE (1982) Effects of forebrain lesions on spawning behaviour in the male goldfish. Physiol Behav 28:1103–1109

    PubMed  CAS  Google Scholar 

  • Kyle AL, Stacey NE, Peter RE (1982) Ventral telencephalic lesions: effects on bisexual behavior, activity, and olfaction in the male goldfish. Behav Neural Biol 36:229–241

    PubMed  CAS  Google Scholar 

  • Larson ET, O’Malley DM, Melloni RH Jr (2006) Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res 167:94–102

    PubMed  CAS  Google Scholar 

  • Le Mevel JC, Pamantung TF, Mabin D, Vaudry H (1993) Effects of central and peripheral administration of arginine vasotocin and related neuropeptides on blood pressure and heart rate in the conscious trout. Brain Res 610:82–89

    PubMed  Google Scholar 

  • Leiser JK, Itzkowitz M (1999) The benefits of dear enemy recognition in three-contender convict cichlid (Cichlasoma nigrofasciatum) contests. Behaviour 136:983–1003

    Google Scholar 

  • Lema SC, Nevitt GA (2004) Exogenous vasotocin alters aggression during agonistic exchanges in male Amargosa River pupfish (Cyprinodon nevadensis amargosae). Horm Behav 46:628–637

    PubMed  CAS  Google Scholar 

  • Lim MM, Wang Z, Olazábal DE, Ren X, Terwilliger EF, Young LJ (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429:754–757

    PubMed  CAS  Google Scholar 

  • Mahlmann S, Meyerhof W, Hausmann H, Heierhorst J, Schönrock C, Zwiers H et al (1994) Structure, function, and phylogeny of [Arg8] vasotocin receptors from teleost fish and toad. Proc Natl Acad Sci USA 91:1342–1345

    PubMed  CAS  Google Scholar 

  • Maney DL, Goode CT, Wingfield JC (1997) Intraventricular infusion of arginine vasotocin induces singing in a female songbird. J Neuroendocrinol 9:487–491

    PubMed  CAS  Google Scholar 

  • Maruska KP (2009) Sex and temporal variations of the vasotocin neuronal system in the damselfish brain. Gen Comp Endocrinol 160:194–204

    PubMed  CAS  Google Scholar 

  • Maruska KP, Mizobe MH, Tricas TC (2007) Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp Biochem Physiol A Mol Integr Physiol 147:129–144

    PubMed  Google Scholar 

  • Miranda JA, Oliveira RF, Carneiro LA, Santos RS, Grober MS (2003) Neurochemical correlates of male polymorphism and alternative reproductive tactics in the Azorean rock-pool blenny. Parablennius parvicornis. Gen Comp Endocrinol 132:183–189

    PubMed  CAS  Google Scholar 

  • Moons L, Cambré M, Marivoet S, Batten TFC, Vanderhaeghen JJ, Ollevier F et al (1988) Peptidergic innervation of the adrenocorticotropic hormone (ACTH)-and growth hormone (GH)-producing cells in the pars distalis of the sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 72:171–180

    PubMed  CAS  Google Scholar 

  • Moons L, Cambré M, Ollevier F, Vandesande F (1989) Immunocytochemical demonstration of close relationships between neuropeptidergic nerve fibers and hormone-producing cell types in the adenohypophysis of the sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 73:270–283

    PubMed  CAS  Google Scholar 

  • Myrberg AA (1985) Acoustically mediated individual recognition by a coral reef fish (Pomacentrus partitus). Anim Behav 33:411–416

    Google Scholar 

  • Myrberg AA, Spires JY (1972) Sound discrimination by the bicolor damselfish, Eupomacentrus partitus. J Exp Biol 57:727–735

    Google Scholar 

  • Nephew BC, Bridges RS (2008) Central actions of arginine vasopressin and a V1a receptor antagonist on maternal aggression, maternal behavior, and grooming in lactating rats. Pharmacol Biochem Behav 91:77–83

    PubMed  CAS  Google Scholar 

  • Nephew BC, Byrnes EM, Bridges RS (2010) Vasopressin mediates enhanced offspring protection in multiparous rats. Neuropharmacology 58:102–106

    PubMed  CAS  Google Scholar 

  • Olazábal DE, Young LJ (2006) Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 141:559–568

    PubMed  Google Scholar 

  • Oliveira RF, McGregor PK, Latruffe C (1998) Know thine enemy: fighting fish gather information from observing conspecific interactions. Proc R Soc Lond B Biol Sci 265:1405–1409

    Google Scholar 

  • Ota Y, Ando H, Ueda H, Urano A (1999) Differences in seasonal expression of neurohypophysial hormone genes in ordinary and precocious male masu salmon. Gen Comp Endocrinol 116:40–48

    PubMed  CAS  Google Scholar 

  • Overmier JB, Gross D (1974) Effects of telencephalic ablation upon nest-building and avoidance behaviors in East African mouthbreeding fish, Tilapia mossambica. Behav Biol 12:211–222

    PubMed  CAS  Google Scholar 

  • Peake TM, McGregor PK (2004) Information and aggression in fishes. Learn Behav 32:114–121

    PubMed  Google Scholar 

  • Pickford GE (1952) Induction of a spawning reflex in hypophysectomized killifish. Nature 170:807–808

    PubMed  CAS  Google Scholar 

  • Pickford GE, Strecker EL (1977) The spawning reflex response of the killifish, Fundulus heteroclitus: isotocin is relatively inactive in comparison with arginine vasotocin. Gen Comp Endocrinol 32:132–137

    PubMed  CAS  Google Scholar 

  • Pickford GE, Knight WR, Knight JN (1980) Where is the spawning reflex receptor for neurohypophysial peptides in the killifish, Fundulus heteroclitus? Revue canadienne de biologie/éditée par l’Université de Montréal 39:97–105

    PubMed  CAS  Google Scholar 

  • Pitkow LJ, Sharer CA, Ren X, Insel TR, Terwilliger EF, Young LJ (2001) Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J Neurosci 21:7392–7396

    PubMed  CAS  Google Scholar 

  • Pollen AA, Dobberfuhl AP, Scace J, Igulu MM, Renn SCP, Shumway CA et al (2007) Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behav Evol 70:21–39

    PubMed  Google Scholar 

  • Portavella M, Vargas JP (2005) Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci 21:2800–2806

    PubMed  Google Scholar 

  • Reaves TA Jr, Hayward JN (1980) Functional and morphological studies of peptide-containing neuroendocrine cells in goldfish hypothalamus. J Comp Neurol 193:777–788

    PubMed  Google Scholar 

  • Saito K, Watanabe S (2004) Spatial learning deficits after the development of dorsomedial telencephalon lesions in goldfish. Neuroreport 15:2695–2699

    PubMed  Google Scholar 

  • Saito K, Watanabe S (2006) Deficits in acquisition of spatial learning after dorsomedial telencephalon lesions in goldfish. Behav Brain Res 172:187–194

    PubMed  Google Scholar 

  • Santangelo N, Bass AH (2006) New insights into neuropeptide modulation of aggression: field studies of arginine vasotocin in a territorial tropical damselfish. Proc R Soc Biol Sci 273:3085–3092

    CAS  Google Scholar 

  • Satou M, Oka Y, Kusunoki M, Matsushima T, Kato M, Fujita I et al (1984) Telencephalic and preoptic areas integrate sexual behavior in hime salmon (landlocked red salmon, Oncorhynchus nerka): results of electrical brain stimulation experiments. Physiol Behav 33:441–447

    PubMed  CAS  Google Scholar 

  • Savaskan E, Ehrhardt R, Schulz A, Walter M, Schächinger H (2008) Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 33:368–374

    PubMed  CAS  Google Scholar 

  • Schreibman MP, Halpern LR (1980) The demonstration of neurophysin and arginine vasotocin by immunocytochemical methods in the brain and pituitary gland of the platyfish, Xiphophorus maculatus. Gen Comp Endocrinol 40:1–7

    PubMed  CAS  Google Scholar 

  • Schwagmeyer P, Davis RE, Kassel J (1977) Telencephalic lesions and behavior in the teleost Macropodus opercularis (L.): effects of telencephalon and olfactory bulb ablation on spawning and foamnest building. Behav Biol 20:463–470

    PubMed  CAS  Google Scholar 

  • Semsar K, Godwin J (2004) Multiple mechanisms of phenotype development in the bluehead wrasse. Horm Behav 45:345–353

    PubMed  CAS  Google Scholar 

  • Semsar K, Kandel FLM, Godwin J (2001) Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm Behav 40:21–31

    PubMed  CAS  Google Scholar 

  • Shinozuka K, Watanabe S (2004) Effects of telencephalic ablation on shoaling behavior in goldfish. Physiol Behav 81:141–148

    PubMed  CAS  Google Scholar 

  • Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T et al (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA 102:16096–16101

    PubMed  CAS  Google Scholar 

  • Thompson TI (1963) Visual reinforcement in Siamese fighting fish. Science 141:55–57

    PubMed  CAS  Google Scholar 

  • Thompson RR, Walton JC (2004) Peptide effects on social behavior: effects of vasotocin and isotocin on social approach behavior in male goldfish (Carassius auratus). Behav Neurosci 118:620–626

    PubMed  CAS  Google Scholar 

  • Thompson RR, Walton JC (2009) Vasotocin immunoreactivity in goldfish brains: characterizing primitive circuits associated with social regulation. Brain Behav Evol 73:153–164

    PubMed  Google Scholar 

  • Thompson RR, Walton JC, Bhalla R, George KC, Beth EH (2008) A primitive social circuit: vasotocin-substance P interactions modulate social behavior through a peripheral feedback mechanism in goldfish. Eur J Neurosci 27:2285–2293

    PubMed  CAS  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, Oxford

    Google Scholar 

  • Van den Dungen HM, Buijs RM, Pool CW, Terlou M (1982) The distribution of vasotocin and isotocin in the brain of the rainbow trout. J Comp Neurol 212:146–157

    PubMed  Google Scholar 

  • van Staaden MJ, Huber R, Kaufman LS, Liem KF (1994) Brain evolution in cichlids of the African Great Lakes: brain and body size, general patterns, and evolutionary trends. Zoology 98:165–178

    Google Scholar 

  • Walton JC, Waxman B, Hoffbuhr K, Kennedy M, Beth E, Scangos J et al (2010) Behavioral effects of hindbrain vasotocin in goldfish are seasonally variable but not sexually dimorphic. Neuropharmacology 58:126–134

    PubMed  CAS  Google Scholar 

  • Wang Z, Ferris CF, De Vries GJ (1994) Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proc Natl Acad Sci USA 91:400–404

    PubMed  CAS  Google Scholar 

  • Warne JM (2001) Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus. Gen Comp Endocrinol 122:312–319

    PubMed  CAS  Google Scholar 

  • Warne JM, Balment RJ (1997a) Changes in plasma arginine vasotocin (AVT) concentration and dorsal aortic blood pressure following AVT injection in the teleost Platichthys flesus. Gen Comp Endocrinol 105:358–364

    PubMed  CAS  Google Scholar 

  • Warne JM, Balment RJ (1997b) Vascular actions of neurohypophysial peptides in the flounder. Fish Physiol Biochem 17:313–318

    CAS  Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • Yamamoto N (2009) Studies on the teleost brain morphology in search of the origin of cognition. Jpn Psychol Res 51:154–167

    Google Scholar 

  • Yamamoto N, Ishikawa Y, Yoshimoto M, Xue HG, Bahaxar N, Sawai N et al (2007) A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model. Brain Behav Evol 69:96–104

    PubMed  Google Scholar 

  • Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7:1048–1054

    PubMed  CAS  Google Scholar 

  • Young LJ, Winslow JT, Nilsen R, Insel TR (1997) Species differences in V a receptor gene expression in monogamous and nonmonogamous voles: behavioral consequences. Behav Neurosci 111:599–605

    PubMed  CAS  Google Scholar 

  • Young LJ, Lim MM, Gingrich B, Insel TR (2001) Cellular mechanisms of social attachment. Horm Behav 40:133–138

    PubMed  CAS  Google Scholar 

  • Zak PJ, Kurzban R, Matzner WT (2005) Oxytocin is associated with human trustworthiness. Horm Behav 48:522–527

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutaka Shinozuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Shinozuka, K. (2012). Hormonal Modulation of Aggression: With a Focus on Teleost Studies. In: Watanabe, S., Kuczaj, S. (eds) Emotions of Animals and Humans. The Science of the Mind. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54123-3_2

Download citation

Publish with us

Policies and ethics