Skip to main content

Tailored Synthetic Surfaces to Control Human Pluripotent Stem Cell Self-Renewal

  • Conference paper
  • First Online:
Chembiomolecular Science
  • 1255 Accesses

Abstract

The ability to grow human cells ex vivo is the basis for remarkable advances in fields ranging from cell biology to medicine. From Gey’s demonstration that human cancer cells can be cultured in vitro [1] to Thomson’s derivation of human embryonic stem (hES) cells [2] to Yamanaka’s reprogramming of fibroblasts to induced pluripotent stem (iPS) cells [3], new opportunities have emerged with access to renewable supplies of human cells. Human pluripotent stem cells (hPS cells, which consist of hES and iPS cells) have the notable capacity to both self-renew indefinitely and differentiate into many different cell types [2–4]. These attributes of hPS cells have engendered excitement because of the cell’s potential applications. For example, they could advance regenerative medicine by serving as renewable sources of specialized human cell types for repair of damaged tissue or organs. In addition, they could be used in drug discovery to identify drug leads and to evaluate lead metabolism and toxicity [5, 6]. Moreover, patient-derived iPS cell lines provide the means to understand disease progression and devise new therapies [7]. Finally, the study of hPS cells can reveal the molecular mechanisms underlying human development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gey GO, Coffman WD, Kubicek MT (1952) Tissue culture studies of the proliferative capacity of human cervical carcinoma and normal epithelium. Cancer Res 12:264–265

    Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  4. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi:10.1126/science.1151526

    Article  PubMed  CAS  Google Scholar 

  5. Klimanskaya I, Rosenthal N, Lanza R (2008) Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 7:131–142. doi:10.1038/nrd2403

    Article  PubMed  CAS  Google Scholar 

  6. Teo AKK, Vallier L (2010) Emerging use of stem cells in regenerative medicine. Biochem J 428:11–23. doi:10.1042/bj20100102

    Article  PubMed  CAS  Google Scholar 

  7. Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661. doi:10.1038/clpt.2011.38

    Article  PubMed  CAS  Google Scholar 

  8. Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514

    Article  PubMed  CAS  Google Scholar 

  9. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646. doi:10.1038/nmeth902

    Article  PubMed  CAS  Google Scholar 

  10. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103:6907–6912. doi:10.1073/pnas.0602280103

    Article  PubMed  CAS  Google Scholar 

  11. Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119. doi:10.1182/blood-2007-03-082586

    Article  PubMed  CAS  Google Scholar 

  12. Xu CH, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  PubMed  CAS  Google Scholar 

  13. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386. doi:10.1016/j.semcancer.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  14. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-De-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28:581–583. doi:10.1038/nbt.1631

    Article  PubMed  CAS  Google Scholar 

  15. Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31: 9135–9144. doi:10.1016/j.biomaterials.2010.08.007

    Article  PubMed  CAS  Google Scholar 

  16. Irwin EF, Gupta R, Dashti DC, Healy KE (2011) Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 32:6912–6919. doi:10.1016/j.biomaterials.2011.05.058

    Article  PubMed  CAS  Google Scholar 

  17. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho S-W, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9:768–778. doi:10.1038/nmat2812

    Article  PubMed  CAS  Google Scholar 

  18. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature (Lond) 309:30–33

    Article  CAS  Google Scholar 

  19. Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 7:989–994. doi:10.1038/nmeth.1532

    Article  PubMed  CAS  Google Scholar 

  20. Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE (2006) Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 79:1–5. doi:10.1002/jbm.a.30732

    PubMed  Google Scholar 

  21. Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E (2010) Synthetic surfaces for human embryonic stem cell culture. J Biotechnol. doi:10.1016/j.jbiotec.2010.01.016

    Google Scholar 

  22. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28:606–610. doi:10.1038/nbt.1629

    Article  PubMed  CAS  Google Scholar 

  23. Orner BP, Derda R, Lewis RL, Thomson JA, Kiessling LL (2004) Arrays for the combinatorial exploration of cell adhesion. J Am Chem Soc 126:10808–10809. doi:10.1021/ja0474291

    Article  PubMed  CAS  Google Scholar 

  24. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  PubMed  CAS  Google Scholar 

  25. Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling LL (2007) Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2:347–355. doi:10.1021/cb700032u

    Article  PubMed  CAS  Google Scholar 

  26. Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608

    Article  CAS  Google Scholar 

  27. Derda R, Wherritt DJ, Kiessling LL (2007) Solid-phase synthesis of alkanethiols for the preparation of self-assembled monolayers. Langmuir ACS J Surfaces Colloids 23:11164–11167. doi:10.1021/la701386v

    Article  CAS  Google Scholar 

  28. Derda R, Musah S, Orner BP, Klim JR, Li L, Kiessling LL (2010) High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc. doi:10.1021/ja906089g

    Google Scholar 

  29. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187. doi:10.1038/nbt1177

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686. doi:10.1038/nbt1310

    Article  PubMed  CAS  Google Scholar 

  31. Berg JM (2011) Fiscal Year 2012 Budget Request, National Institutes of Health. In: Health NI (ed) NIGMS Director’s Statements to Appropriations Subcommittees, National Institute of General Medical Sciences

    Google Scholar 

  32. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and Sulfated Glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al., (eds.). Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press;pp. 229–248

    Google Scholar 

  33. Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, Goddard WA, Nishi A, Hsieh-Wilson, LC (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2(9):467–473. doi: 10.1038/nchembio810. PubMed PMID: 16878128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura L. Kiessling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Kiessling, L.L. (2012). Tailored Synthetic Surfaces to Control Human Pluripotent Stem Cell Self-Renewal. In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_15

Download citation

Publish with us

Policies and ethics