Skip to main content

Fate Specification of Neural Stem Cells

  • Chapter
Neurogenesis in the Adult Brain I

Abstract

Neural stem cells (NSCs) possess the ability to self-renew and to ­differentiate along neuronal and glial lineages. At the molecular level, these ­processes are currently defined in terms of a dynamic interplay between extracellular cues, including cytokine signaling, and intracellular programs such as epigenetic modification, including histone methylation and acetylation and DNA methylation. This review discusses recent advances in our understanding of the molecular mechanisms that control the specification of neuronal, astroglial, and oligodendroglial fates in NSCs of the developing and adult central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akazawa C, Sasai Y, Nakanishi S et al (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem 267:21879–21885.

    PubMed  CAS  Google Scholar 

  • Andres ME, Burger C, Peral-Rubio MJ et al (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA 96:9873–9878.

    PubMed  CAS  Google Scholar 

  • Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506.

    PubMed  CAS  Google Scholar 

  • Ballas N, Grunseich C, Lu DD et al (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657.

    PubMed  CAS  Google Scholar 

  • Battaglioli E, Andres ME, Rose DW et al (2002) REST repression of neuronal genes requires components of the hSWI.SNF complex. J Biol Chem 277:41038–41045.

    PubMed  CAS  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530.

    PubMed  CAS  Google Scholar 

  • Bonni A, Sun Y, Nadal-Vicens M et al (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483.

    PubMed  CAS  Google Scholar 

  • Buffo A, Vosko MR, Erturk D et al (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci USA 102:18183–18188.

    PubMed  CAS  Google Scholar 

  • Cameron HA, Woolley CS, McEwen BS et al (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344.

    PubMed  CAS  Google Scholar 

  • Campbell K (2005) Cortical neuron specification: it has its time and place. Neuron 46:373–376.

    PubMed  CAS  Google Scholar 

  • Cebolla B, Vallejo M (2006) Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J Neurochem 97:1057–1070.

    PubMed  CAS  Google Scholar 

  • Chambers CB, Peng Y, Nguyen H et al (2001) Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development (Camb) 128:689–702.

    CAS  Google Scholar 

  • Chen H, Thiagalingam A, Chopra H et al (1997) Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA 94:5355–5360.

    PubMed  CAS  Google Scholar 

  • Chong JA, Tapia-Ramirez J, Kim S et al (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957.

    PubMed  CAS  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433.

    PubMed  CAS  Google Scholar 

  • Conaco C, Otto S, Han JJ et al (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427.

    PubMed  CAS  Google Scholar 

  • das Neves L, Duchala CS, Tolentino-Silva F et al (1999) Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci USA 96:11946–11951.

    Google Scholar 

  • de la Serna IL, Ohkawa Y, Imbalzano AN (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7:461–473.

    PubMed  Google Scholar 

  • Deneen B, Ho R, Lukaszewicz A et al (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52:953–968.

    PubMed  CAS  Google Scholar 

  • Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134.

    PubMed  CAS  Google Scholar 

  • Elson GC, Lelievre E, Guillet C et al (2000) CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci 3:867–872.

    PubMed  CAS  Google Scholar 

  • Fan G, Martinowich K, Chin MH et al (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development (Camb) 132:3345–3356.

    CAS  Google Scholar 

  • Fukuda S, Kondo T, Takebayashi H et al (2004) Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ 11:196–202.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Mukherjee S, Bao ZZ et al (2000) rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26:383–394.

    PubMed  CAS  Google Scholar 

  • Furusho M, Ono K, Takebayashi H et al (2006) Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev Biol 293:348–357.

    PubMed  CAS  Google Scholar 

  • Gabay L, Lowell S, Rubin LL et al (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40:485–499.

    PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438.

    PubMed  CAS  Google Scholar 

  • Gage FH, Kempermann G, Palmer TD et al (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266.

    PubMed  CAS  Google Scholar 

  • Garcia-Verdugo JM, Doetsch F, Wichterle H et al (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36:234–248.

    PubMed  CAS  Google Scholar 

  • Ge W, Martinowich K, Wu X et al (2002) Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res 69:848–860.

    PubMed  CAS  Google Scholar 

  • Grandbarbe L, Bouissac J, Rand M et al (2003) Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development (Camb) 130:1391–1402.

    CAS  Google Scholar 

  • Gronostajski RM (2000) Roles of the NFI/CTF gene family in transcription and development. Gene (Amst) 249:31–45.

    CAS  Google Scholar 

  • Gross RE, Mehler MF, Mabie PC et al (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17:595–606.

    PubMed  CAS  Google Scholar 

  • He F, Ge W, Martinowich K et al (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8:616–625.

    PubMed  CAS  Google Scholar 

  • He Y, Dupree J, Wang J et al (2007) The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55:217–230.

    PubMed  CAS  Google Scholar 

  • Hermanson O, Jepsen K, Rosenfeld MG (2002) N-CoR controls differentiation of neural stem cells into astrocytes. Nature (Lond) 419:934–939.

    CAS  Google Scholar 

  • Hirabayashi Y, Itoh Y, Tabata H et al (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development (Camb) 131:2791–2801.

    CAS  Google Scholar 

  • Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14:461–469.

    PubMed  CAS  Google Scholar 

  • Hsieh J, Nakashima K, Kuwabara T et al (2004a) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664.

    PubMed  CAS  Google Scholar 

  • Hsieh J, Aimone JB, Kaspar BK et al (2004b) IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 164:111–122.

    PubMed  CAS  Google Scholar 

  • Israsena N, Hu M, Fu W et al (2004) The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol 268:220–231.

    PubMed  CAS  Google Scholar 

  • Jackson EL, Garcia-Verdugo JM, Gil-Perotin S et al (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51:187–199.

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Ransom BR (1988) Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia 1:64–73.

    PubMed  CAS  Google Scholar 

  • Kohyama J, Tokunaga A, Fujita Y et al (2005) Visualization of spatiotemporal activation of Notch signaling: live monitoring and significance in neural development. Dev Biol 286:311–325.

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Hsieh J, Nakashima K et al (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793.

    PubMed  CAS  Google Scholar 

  • Ledent V, Paquet O, Vervoort M (2002) Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol 3:RESEARCH0030.

    Google Scholar 

  • Lee JC, Mayer-Proschel M, Rao MS (2000) Gliogenesis in the central nervous system. Glia 30:105–121.

    PubMed  CAS  Google Scholar 

  • Lee SK, Lee B, Ruiz EC et al (2005) Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev 19:282–294.

    PubMed  CAS  Google Scholar 

  • Lelievre E, Plun-Favreau H, Chevalier S et al (2001) Signaling pathways recruited by the cardiotrophin-like cytokine/cytokine-like factor-1 composite cytokine: specific requirement of the membrane-bound form of ciliary neurotrophic factor receptor alpha component. J Biol Chem 276:22476–22484.

    PubMed  CAS  Google Scholar 

  • Lessard J, Wu JI, Ranish JA et al (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215.

    PubMed  CAS  Google Scholar 

  • Li W, Cogswell CA, LoTurco JJ (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18:8853–8862.

    PubMed  CAS  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM et al (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726.

    PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096.

    PubMed  CAS  Google Scholar 

  • Lu QR, Yuk D, Alberta JA et al (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329.

    PubMed  CAS  Google Scholar 

  • Lu QR, Sun T, Zhu Z et al (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86.

    PubMed  CAS  Google Scholar 

  • Machon O, van den Bout CJ, Backman M et al (2003) Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122:129–143.

    PubMed  CAS  Google Scholar 

  • Marin-Husstege M, Muggironi M, Liu A et al (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333–10345.

    PubMed  CAS  Google Scholar 

  • Marshall CA, Novitch BG, Goldman JE (2005) Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J Neurosci 25:7289–7298.

    PubMed  CAS  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250.

    PubMed  CAS  Google Scholar 

  • Molofsky AV, Pardal R, Morrison SJ (2004) Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16:700–707.

    PubMed  CAS  Google Scholar 

  • Moore KB, Schneider ML, Vetter ML (2002) Posttranslational mechanisms control the timing of bHLH function and regulate retinal cell fate. Neuron 34:183–195.

    PubMed  CAS  Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z et al (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510.

    PubMed  CAS  Google Scholar 

  • Muroyama Y, Fujiwara Y, Orkin SH et al (2005) Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438:360–363.

    PubMed  CAS  Google Scholar 

  • Murre C, McCaw PS, Vaessin H et al (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.

    PubMed  CAS  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa et al (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482.

    Google Scholar 

  • Nakashima K, Takizawa T, Ochiai W et al (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873.

    PubMed  CAS  Google Scholar 

  • Namihira M, Nakashima K, Taga T (2004) Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett 572:184–188.

    PubMed  CAS  Google Scholar 

  • Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540.

    PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L et al (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144.

    PubMed  CAS  Google Scholar 

  • Norton JD, Deed RW, Craggs G et al (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 8:58–65.

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G et al (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207.

    PubMed  CAS  Google Scholar 

  • Okano H (2002) Stem cell biology of the central nervous system. J Neurosci Res 69:698–707.

    PubMed  CAS  Google Scholar 

  • Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146.

    PubMed  CAS  Google Scholar 

  • Pringle NP, Guthrie S, Lumsden A et al (1998) Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20:883–893.

    PubMed  CAS  Google Scholar 

  • Qian X, Shen Q, Goderie SK et al (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80.

    PubMed  CAS  Google Scholar 

  • Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21:461–467.

    CAS  Google Scholar 

  • Roopra A, Sharling L, Wood IC et al (2000) Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol Cell Biol 20:2147–2157.

    PubMed  CAS  Google Scholar 

  • Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39:13–25.

    PubMed  CAS  Google Scholar 

  • Samanta J, Kessler JA (2004) Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131:4131–4142.

    PubMed  CAS  Google Scholar 

  • Sauvageot CM, Stiles CD (2002) Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12:244–249.

    PubMed  CAS  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363.

    PubMed  CAS  Google Scholar 

  • Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA 93:9881–9886.

    PubMed  CAS  Google Scholar 

  • Seo S, Herr A, Lim JW et al (2005) Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19:1723–1734.

    PubMed  CAS  Google Scholar 

  • Seto E, Shi Y, Shenk T (1991) YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. Nature 354:241–245.

    PubMed  CAS  Google Scholar 

  • Setoguchi T, Kondo T (2004) Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation. J Cell Biol 166:963–968.

    PubMed  CAS  Google Scholar 

  • Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577–589.

    PubMed  CAS  Google Scholar 

  • Shu T, Butz KG, Plachez C et al (2003) Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J Neurosci 23:203–212.

    PubMed  CAS  Google Scholar 

  • Song MR, Ghosh A (2004) FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 7:229–235.

    PubMed  Google Scholar 

  • Steele-Perkins G, Plachez C, Butz KG et al (2005) The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 25:685–698.

    PubMed  CAS  Google Scholar 

  • Stolt CC, Lommes P, Sock E et al (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689.

    PubMed  CAS  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376.

    PubMed  CAS  Google Scholar 

  • Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819.

    PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872.

    PubMed  CAS  Google Scholar 

  • Takebayashi H, Yoshida S, Sugimori M et al (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99:143–148.

    PubMed  CAS  Google Scholar 

  • Takebayashi H, Nabeshima Y, Yoshida S et al (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12:1157–1163.

    PubMed  CAS  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M et al (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758.

    PubMed  CAS  Google Scholar 

  • Takizawa T, Ochiai W, Nakashima K et al (2003) Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res 31:5723–5731.

    PubMed  CAS  Google Scholar 

  • Tanigaki K, Nogaki F, Takahashi J et al (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55.

    PubMed  CAS  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117.

    PubMed  CAS  Google Scholar 

  • Thomas MJ, Seto E (1999) Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 236:197–208.

    PubMed  CAS  Google Scholar 

  • Tokunaga A, Kohyama J, Yoshida T et al (2004) Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J Neurochem 90:142–154.

    PubMed  CAS  Google Scholar 

  • Vinals F, Reiriz J, Ambrosio S et al (2004) BMP-2 decreases Mash1 stability by increasing Id1 expression. EMBO J 23:3527–3537.

    PubMed  CAS  Google Scholar 

  • Wrana JL (2000) Regulation of Smad activity. Cell 100:189–192.

    PubMed  CAS  Google Scholar 

  • Yant SR, Zhu W, Millinoff D et al (1995) High affinity YY1 binding motifs: identification of two core types (ACAT and CCAT) and distribution of potential binding sites within the human beta globin cluster. Nucleic Acids Res 23:4353–4362.

    PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340.

    PubMed  CAS  Google Scholar 

  • Yung SY, Gokhan S, Jurcsak J et al (2002) Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci USA 99:16273–16278.

    PubMed  CAS  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73.

    PubMed  CAS  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25:331–343.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ian Smith for helpful comments and critical reading of the manuscript. We are very grateful to M. Ueda for her excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinichi Nakashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Namihira, M., Nakashima, K. (2011). Fate Specification of Neural Stem Cells. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_3

Download citation

Publish with us

Policies and ethics