Skip to main content

The Hodgkin–Huxley Theory of Neuronal Excitation

  • Chapter
Computational Electrophysiology

Part of the book series: A First Course in “In Silico Medicine” ((FCISM,volume 2))

  • 1071 Accesses

Abstract

Hodgkin and Huxley (1952) proposed the famous Hodgkin–Huxley (hereinafter referred to as HH) equations which quantitatively describe the generation of action potential of squid giant axon, although there are still arguments against it (Connor et al. 1977; Strassberg and DeFelice 1993; Rush and Rinzel 1995; Clay 1998). The HH equations are important not only in that it is one of the most successful mathematical model in quantitatively describing biological phenomena but also in that the method (the HH formalism or the HH theory) used in deriving the model of a squid is directly applicable to many kinds of neurons and other excitable cells. The equations derived following this HH formalism are called the HH-type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Kepler TB (1990) Model neurons: from Hodgkin–Huxley to Hopfield. In: Garrido L (ed) Statistical mechanics of neural networks. Springer, Berlin

    Google Scholar 

  • Adams P (1982) Voltage-dependent conductances of vertebrate neurones. Trends Neurosci 5:116–119

    Article  Google Scholar 

  • Bedrov YA, Akoev GN, Dick OE (1992) Partition of the Hodgkin–Huxley type model parameter space into the regions of qualitatively different solutions. Biol Cybern 66:413–418

    Article  MATH  Google Scholar 

  • Carpenter GA (1977) A geometric approach to singular perturbation problems with applications to nerve impulse equations. J Diff Eqns 23:335–367

    Article  MathSciNet  MATH  Google Scholar 

  • Clay JR (1998) Excitability of the squid giant axon revisited. J Neurophysiol 80:903–913

    Google Scholar 

  • Connor JA, Walter D, McKown R (1977) Neural repetitive firing: modifications of the Hodgkin–Huxley axon suggested by experimental results from crustacean axons. Biophys J 18:81–102

    Article  Google Scholar 

  • Crill WE, Schwindt PC (1983) Active currents in mammalian central neurons. Trends Neurosci 6:236–240

    Article  Google Scholar 

  • Doedel E, Wang X, Fairgrieve T (1995) AUTO94 – software for continuation and bifurcation problems in ordinary differential equations. CRPC-95-2, California Institute of Technology

    Google Scholar 

  • FitzHugh R (1960) Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J Gen Physiol 43:867–896

    Article  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophy J 1:445–466

    Article  Google Scholar 

  • Fukai H, Doi S, Nomura T, Sato S (2000a) Hopf bifurcations in multiple parameter space of the Hodgkin–Huxley equations. I. Global organization of bistable periodic solutions. Biol Cybern 82:215–222

    MATH  Google Scholar 

  • Golomb D, Guckenheimer J, Gueron S (1993) Reduction of a channel-based model for a stomatogastric ganglion LP neuron. Biol Cybern 69:129–137

    Article  MATH  Google Scholar 

  • Guckenheimer J, Labouriau IS (1993) Bifurcation of the Hodgkin and Huxley equations: a new twist. Bull Math Biol 55:937–952

    MATH  Google Scholar 

  • Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon membrane as model for neuroneoscillator. J Physiol 305:377–395

    Google Scholar 

  • Hassard B (1978) Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon. J Theor Biol 71:401–420

    Article  MathSciNet  Google Scholar 

  • Hassard BD, Shiau LJ (1989) Isolated periodic solutions of the Hodgkin–Huxley equations. J Theor Biol 136:267–280

    Article  MathSciNet  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its applications to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  • Horikawa Y (1994) Period-doubling bifurcations and chaos in the decremental propagation of a spike train in excitable media. Phys Rev E 50:1708–1710

    Article  Google Scholar 

  • Kepler TB, Marder E (1993) Spike initiation and propagation on axons with slow inward currents. Biol Cybern 68:209–214

    Article  Google Scholar 

  • Kepler TB, Abbott LF, Marder E (1992) Reduction of conductance-based neuron models. Biol Cybern 66:381–387

    Article  MATH  Google Scholar 

  • Kokoz YuM, Krinskii VI (1973) Analysis of the equations of excitable membranes. II. Method of analysing the electrophysiological characteristics of the Hodgkin–Huxley membrane from the graphs of the zero-isoclines of a second order system. Biofizika 18:878–885

    Google Scholar 

  • Krinskii VI, Kokoz YuM (1973) Analysis of the equations of excitable membranes. I. Reduction of the Hodgkin–Huxley equations to a second order system. Biofizika 18:506–511

    Google Scholar 

  • Labouriau IS (1985) Degenerate Hopf bifurcation and nerve impulse. SIAM J Math Anal 16:1121–1133

    Article  MathSciNet  MATH  Google Scholar 

  • Labouriau IS, Ruas MAS (1996) Singularities of equations of Hodgkin–Huxley type. Dyn Stab Syst 11:91–108

    Article  MathSciNet  MATH  Google Scholar 

  • Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line stimulating nerve axon. Proc Inst Radio Eng 50:2061–2070

    Google Scholar 

  • Plant RE (1976) The geometry of the Hodgkin–Huxley model. Comp Prog Biomed 6:85–91

    Article  Google Scholar 

  • Poznanski RR (1998) Electrophysiology of a leaky cable model for coupled neurons. J Austral Math Soc B 40:59–71

    Article  MathSciNet  MATH  Google Scholar 

  • Rinzel J (1978) On repetitive activity in nerve. Fed Proc 37:2793–2802

    Google Scholar 

  • Rinzel J (1985) Excitation dynamics: insights from simplified membrane models. Fed Proc 44:2944–2946

    Google Scholar 

  • Rinzel J, Keener JP (1983) Hopf bifurcation to repetitive activity in nerve. SIAM J Appl Math 43:907–922

    Article  MathSciNet  MATH  Google Scholar 

  • Rinzel J, Miller RN (1980) Numerical calculation of stable and unstable periodic solutions to the Hodgkin–Huxley equations. Math Biosci 49:27–59

    Article  MathSciNet  MATH  Google Scholar 

  • Rush ME, Rinzel J (1995) The potassium A-current, low firing rates and rebound excitation in Hodgkin–Huxley models. Bull Math Biol 57:899–929

    MATH  Google Scholar 

  • Shiau LJ, Hassard BD (1991) Degenerate Hopf bifurcation and isolated periodic solutions of the Hodgkin–Huxley model with varying sodium ion concentration. J Theor Biol 148:157–173

    Article  Google Scholar 

  • Strassberg AF, DeFelice LJ (1993) Limitations of the Hodgkin–Huxley formalism: effects of single channel kinetics upon transmembrane voltage dynamics. Neural Comput 5:843–855

    Article  Google Scholar 

  • Troy WC (1978) The bifurcation of periodic solutions in the Hodgkin–Huxley equations. Q Appl Math 36:73–83

    MathSciNet  MATH  Google Scholar 

  • Yanagida E (1985) Stability of fast traveling pulse solutions of the FitzHugh–Nagumo equations. J Math Biol 22:81–104

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Doi, S., Inoue, J., Pan, Z. (2010). The Hodgkin–Huxley Theory of Neuronal Excitation. In: Computational Electrophysiology. A First Course in “In Silico Medicine”, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53862-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53862-2_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53861-5

  • Online ISBN: 978-4-431-53862-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics