Skip to main content

Formation Flight Control of Multiple Small Autonomous Helicopters Using Predictive Control

  • Chapter
Autonomous Flying Robots

Abstract

In this chapter, we present a model-based formation flight control of multiple small unmanned helicopters as an example of advanced control of unmanned aerial vehicles (UAVs). We design the autonomous formation flight control system as a “leader-following” configuration. In order to achieve good control performance under the system constraints, the “model predictive control” is used for the translational position control of follower helicopters. Position constraints such as moving range and collision avoidance problem are considered in the real-time optimal control calculations. To achieve robustness against disturbance, a minimal-order disturbance observer is used to estimate the unmeasurable state variables and disturbance. The simulation results are presented to show the feasibility of the control strategy. The formation flight control experiment is performed using two helicopters. The experimental results demonstrate an accurate control performance. The position constraint capability is confirmed through the experiments with a single helicopter. Finally, robustness against wind is verified by a windy condition experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakazawa D, Suzuki S, Sakai S, Nonami K (2008) Formation flight control of small unmanned helicopters. Trans Jpn Soc Mech Eng C 74(747):2737–2746

    Article  Google Scholar 

  2. Shim DH, Chung H, Kim HJ, Sastry S (2005) Autonomous exploration in unknown urban environments for unmanned aerial vehicles. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit, pp 1–8

    Google Scholar 

  3. Shin J, Fujiwara D, Hazawa K, Nonami K (2002) Attitude control and hovering control of radio-controlled helicopter. Trans Jpn Soc Mech Eng C 68(675):148–155

    Article  Google Scholar 

  4. Johnson EN, Calise AJ, Sttigeri R, Watanabe Y, Madyastha V (2004) Approaches to vision-based formation control. In: Proceedings of the IEEE conference on decision and control, pp 1643–1648

    Google Scholar 

  5. Hazawa K, Shin J, Fujiwara D, Igarashi K, Fernando D, Nonami K (2003) Autonomous flight control of hobby-class small unmanned helicopter (Report 2: modeling based on experimental identification and autonomous flight control experiments). J Robot Mechatron 15(5):546–554

    Google Scholar 

  6. Saffarian M, Fahimi F (2007) A novel leader – follower framework for control of helicopter formation. In: Proceedings of the IEEE aerospace conference, pp 1–6

    Google Scholar 

  7. Oh S, Johnson EN (2007) Relative motion estimation for vision-based formation flight using unscented Kalman filter. In: Proceedings of the AIAA guidance, navigation, and control conference, pp 1–17

    Google Scholar 

  8. Schouwenaars T, Feron E, How J (2006) Multi-vehicle path planning for non-line of sight communication. In: Proceedings of the 2006 American control conference, pp 5757–5762

    Google Scholar 

  9. Galzi D, Shtessel Y (2006) UAV formations control using high order sliding modes. In: Proceedings of the 2006 American control conference, pp 4249–4254

    Google Scholar 

  10. Dimarogonas DV, Kyriakopoulos KJ (2006) Distributed cooperative control and collision avoidance for multiple kinematic agents. In: Proceedings of the IEEE conference on decision and control, pp 721–726

    Google Scholar 

  11. Casbeer DW, Beard RW, McLain TW, Li S, Mehra RK (2005) Forest fire monitoring with multiple small UAVs. In: Proceedings of the 2005 American control conference, pp 3530–3535

    Google Scholar 

  12. Walle D, Fidan B, Sutton A, Yu C, Anderson BDO (2008) Non-hierarchical UAV formation control for surveillance tasks. In: Proceedings of the 2008 American control conference, pp 777–782

    Google Scholar 

  13. Borrelli F, Keviczky T, Balas GJ (2004) Collision-free UAV formation flight using decentralized optimization and invariant sets. In: Proceedings of the 43rd IEEE conference on decision and control, pp 1099–1104

    Google Scholar 

  14. Shin J, Kim HJ (2009) Nonlinear model predictive formation flight. IEEE Trans Syst Man Cybern A Syst Hum 39(5):1116–1125

    Article  Google Scholar 

  15. Moshtagh N, Michael N, Jadbabaie A, Daniilidis K (2009) Vision-based, distributed control laws for motion coordination of nonholonomic robots. IEEE Trans Robot 25(4):851–860

    Article  Google Scholar 

  16. Kim S, Kim Y (2007) Three dimensional optimum controller for multiple UAV formation flight using behavior-based decentralized approach. In: Proceedings of the international conference on control, automation and systems 2007, pp 1387–1392

    Google Scholar 

  17. Direks T, Jagannathan S (2009) Neural network control of quadrotor UAV formations. In: Proceedings of the 2009 American control conference, pp 2990–2996

    Google Scholar 

  18. Ren W (2007) Consensus strategies for cooperative control of vehicle formations. IET Contr Theor Appl 1(2):505–512

    Article  Google Scholar 

  19. Wang X, Yadav V, Balakrishnan SN (2007) Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans Contr Syst Technol 15(4):672–679

    Article  Google Scholar 

  20. Kameyama Y, Sayama H (1974) Penalty method for optimal control problems with state constraints. Trans Soc Instrum Contr Eng 10(3):272–277

    Google Scholar 

  21. Kato K (1988) Optimal control – approach to nonlinear control. University of Tokyo Press, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Nonami Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Nonami, K., Kendoul, F., Suzuki, S., Wang, W., Nakazawa, D. (2010). Formation Flight Control of Multiple Small Autonomous Helicopters Using Predictive Control. In: Autonomous Flying Robots. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53856-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53856-1_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53855-4

  • Online ISBN: 978-4-431-53856-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics