Skip to main content

Heart Failure, Ischemia/Reperfusion Injury and Cardiac Troponin

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

Abstract

Over the forty years since its discovery, there has been a profound transition in thinking with regard to the role of troponin in the control of cardiac function. This transition involved a change in perception of troponin as a passive molecular switch responding to membrane controlled fluctuations in cytoplasmic Ca2+ to a perception of troponin as a critical element in signaling cascades that actively engage in control of cardiac function. Evidence demonstrating functionally significant developmental and mutant isoform switches and post-translational modifications of cardiac troponin complex proteins, troponin I (cTnI) and troponin T (cTnT) provided convincing evidence for a more complicated role of troponin in control of cardiac function and dynamics. The physiological role of these modifications of troponin is reviewed in this monograph and has also been reviewed elsewhere (Solaro and Rarick, 1998; Gordon et al., 2000; Solaro et al., 2002a; Kobayashi and Solaro, 2005). Our focus here is on studies related to modifications in troponin that appear important in the processes leading from compensated hypertrophy to heart failure. These studies reveal the potentially significant role of post-translational modifications of troponin in these processes. Another focus is on troponin as a target for inotropic agents. Pharmacological manipulation of troponin by small molecules remains an important avenue of approach for the treatment of acute and chronic heart failure (Kass and Solaro, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17.6. References

  • Arteaga, G. M., Warren, C. M., Milutinovic, S., Martin, A. F., and Solaro, R. J., 2005, Specific enhancement of sarcomeric response to Ca2+ protects murine myocardium against ischemia/reperfusion dysfunction, Am. J. Physiol. Heart Circ. Physiol. 289:H2183–H2192.

    Article  PubMed  CAS  Google Scholar 

  • Bokoch, G. M., 2003, Biology of the p21-activated kinases, Annu Rev Biochem. 72:743–781.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, N., Walsh, R. A., Song, G., Estridge, T., Sandusky, G. E., Fouts, R. L., Mintze, K., Pickard, T., Roden, R., Bristow, M. R., Sabbah, H. N., Mizrahi, J. L., Gromo, G., King, G. L., and Vlahos, C. J., 1999, Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart, Circulation 99:384–391.

    PubMed  CAS  Google Scholar 

  • Burkart, E. M., Sumandea, M. P., Kobayashi, T., Nili, M., Martin, A. F., Homsher, E., and Solaro, R. J., 2003, Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity, J. Biol. Chem. 278:11265–11272.

    Article  PubMed  CAS  Google Scholar 

  • Buscemi, N., Foster, D. B., Neverova, I., and Van Eyk, J. E., 2002, p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I, Circ. Res. 91:509–516.

    Article  PubMed  CAS  Google Scholar 

  • Crozier, S. J., Vary, T. C., Kimball, S. R., and Jefferson, L. S., 2005, Cellular energy status modulates translational control mechanisms in ischemic-reperfused rat hearts, Am. J. Physiol. Heart Circ. Physiol. 289:H1242–H1250.

    Article  PubMed  CAS  Google Scholar 

  • Dorn, G. W., 2nd, and Force, T., 2005, Protein kinase cascades in the regulation of cardiac hypertrophy, J. Clin. Invest. 115:527–537.

    Article  PubMed  CAS  Google Scholar 

  • Du Toit, E. F., Muller, C. A., McCarthy, J., and Opie, L. H. 1999, Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart, J. Pharmacol. Exp. Ther. 290:505–514.

    PubMed  CAS  Google Scholar 

  • Frey, N., and Olson, E. N., 2003, Cardiac hypertrophy: the good, the bad, and the ugly, Annu. Rev. Physiol. 65:45–79.

    Article  PubMed  CAS  Google Scholar 

  • Goldspink, P. H., Montgomery, D. E., Walker, L. A., Urboniene, D., McKinney, R. D., Geenen, D. L., Solaro, R. J., and Buttrick, P. M., 2004, Protein kinase C-epsilon overexpression alters myofilament properties and composition during the progression of heart failure, Circ. Res. 95:424–432.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, A. V., and Potter, J. D., 2004, Molecular and cellular aspects of troponin cardiomyopathies, Ann. N. Y. Acad. Sci. 1015:214–224.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. M., Homsher, E., and Regnier, M., 2000, Regulation of contraction in striated muscle, Physio. Rev. 80:853–924.

    CAS  Google Scholar 

  • Herron, T. J., Korte, F. S., and McDonald, K. S., 2001, Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes, Circ. Res. 89:1184–1190.

    PubMed  CAS  Google Scholar 

  • Hoshijima, M., Sah, V. P., Wang, Y., Chien, K. R., and Brown, J. H., 1998, The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase, J. Biol. Chem. 273:7725–7730.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., Wolska, B. M., Montgomery, D. E., Burkart, E., Buttrick, P. M., and Solaro, R. J., 2001, Increased contractility and altered Ca2+-transients of mouse heart myocytes conditionally expressing PKC-beta II, Am. J. Physiol. (Cell). 280:C1114–C1120.

    CAS  Google Scholar 

  • Kass, D., and Solaro, R. J., 2006, Mechanisms and use of calcium sensitizing agents, Circulation 113:305–315.

    Article  PubMed  Google Scholar 

  • Ke, Y., Huang, L., and Solaro, R. J., 2004, Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes, Circ. Res. 94:194–200.

    Article  PubMed  CAS  Google Scholar 

  • Kentish, J. C., McCloskey, D. T., Layland, J., Palmer, S., Leiden, J. M., Martin, A. F., and Solaro, R. J., 2001, Phosphorylation of troponin I by protein kinase A accelerates relaxation and cross-bridge cycle kinetics in mouse ventricular muscle, Circ. Res. 88:1059–1065.

    PubMed  CAS  Google Scholar 

  • Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi K., 1996, Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, N., Horinaka, S., Mita, S., Nakano, S., Honda, T., Yoshida, K., Kobayashi, T., and Matsuoka, H., 2002, Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat. Cardiovasc. Res. 55:757–767.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., and Solaro, R. J., 2005, Calcium, thin filaments, and integrative biology of cardiac contractility, Annu. Rev. Physiol. 67:39–67.

    Article  PubMed  CAS  Google Scholar 

  • Layland, J., Grieve, D. J., Cave, A. C., Sparks, E., Solaro, R. J., and Shah, A. M., 2004, Essential role of troponin I in the positive inotropic response to isoprenaline in mouse hearts contracting auxotonically, J. Physiol. 556:835–847.

    Article  PubMed  CAS  Google Scholar 

  • Martin, A. M., Ball, K., Gao, L., Kumar, P. K., and Solaro, R. J., 1991, Identification and functional significance of troponin I isoforms in neonatal rat heart myofibrils, Circ. Res. 69:1244–1252.

    PubMed  CAS  Google Scholar 

  • Metzger, J. M., and Westfall, M. V. 2001, Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation, Circ. Res. 94:146–158.

    Article  CAS  Google Scholar 

  • Mirza, M., Marston, S., Willott, R., Ashley, C., Mogensen, J., McKenna, W., Robinson, P., Redwood, C., and Watkins, H., 2005, Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype, J. Biol. Chem. 280:28498–28506.

    Article  PubMed  CAS  Google Scholar 

  • Mogensen, J., Kubo, T., Duque, M., Uribe, W., Shaw, A., Murphy, R., Gimeno, J. R., Elliott, P., and McKenna, W. J., 2003, Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations, J. Clin. Invest. 111:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Nosek, T. M., Brotto, M. A., and Jin, J. P., 2004, Troponin T isoforms alter the tolerance of transgenic mouse cardiac muscle to acidosis, Arch. Biochem. Biophys. 430:178–184.

    Article  PubMed  CAS  Google Scholar 

  • Pi, Y., Kemnitz, K. R., Zhang, D., Kranias, E. G., and Walker, J. W., 2002, Phosphorylation of troponin I controls cardiac twitch dynamics: evidence from phosphorylation site mutants expressed on a troponin I-null background in mice, Circ. Res. 90:649–656.

    Article  PubMed  CAS  Google Scholar 

  • Pi, Y., Zhang, D., Kemnitz, K. R., Wang, H., and Walker, J. W., 2003, Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium, J. Physiol. 552:845–857.

    Article  PubMed  CAS  Google Scholar 

  • Saggin, L., Gorza, L., Ausoni, S., and Schiaffino, S., 1989, Troponin I switching in the developing heart, J. Biol. Chem. 264:16299–16302.

    PubMed  CAS  Google Scholar 

  • Sah, V. P., Hoshijima, M., Chien, K. R., and Brown, J. H., 1996, Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways, J. Biol. Chem. 271:31185–31190.

    Article  PubMed  CAS  Google Scholar 

  • Samarel, A. M., 2005, Costameres, focal adhesions, and cardiomyocyte mechanotransduction, Am. J. Physiol. Heart Circ. Physiol. 289:H2291–H2301.

    Article  PubMed  CAS  Google Scholar 

  • Scruggs, S. B., Walker, L. A., Lyu, T., Geenen, D. L., Solaro, R. J., Buttrick, P. M., and Goldspink, P. H., 2006, Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKC epsilon phosphorylation, J. Mol. Cell Cardiol. 40:465–473.

    Article  PubMed  CAS  Google Scholar 

  • Senszaki, H., Isoda, T., Paolocci, N., Ekelund, U., Hare, J. M., and Kass, D. A., 2000, Improved mechanoenergetics and cardiac rest and reserve function of an in vivo failing heart by calcium sensitizer EMD-57033, Circulation 101:1040–1048.

    Google Scholar 

  • Sonntag, S., Sundberg, S., Lehtonen, L. A., and Kleber, F. X., 2004, The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia, J. Am. Coll. Cardiol. 43:2177–2182.

    Article  PubMed  CAS  Google Scholar 

  • Solaro, R. J., 2001, Modulation of cardiac myofilament activity by protein phosphorylation, in: Handbook of Physiology: Section 2. The Cardiovascular System. Vol 1. The Heart, E. Page, H. Fozzard, R. J. Solaro, eds., Oxford University Press, New York, pp. 264–300.

    Google Scholar 

  • Solaro, R. J., Gambassi, G., Warshaw, D. M., Keller, M. R., Spurgeon, H. A., Beier, N., and Lakatta, E. G., 1993, Steroselective actions of thiadiazinones on dog cardiac myocytes and myofilaments, Circ. Res. 73:981–990.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J., Kumar, P., Blanchard, E. M., and Martin, A. M., 1986, Differential effects of pH on Ca2+ activation of myofilaments of adult and perinatal dog hearts: evidence for developmental differences in thin filament regulation, Circ. Res. 58:721–729.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J., Lee, J., Kentish, J., and Allen, D. A., 1988, Differences in the response of adult and neonatal heart muscle to acidosis, Circ. Res. 63:779–787.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J., and Rarick, H. M., 1998, Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments, Circ. Res. 83:471–480.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J., Varghese, J., Marian, A. J., and Chandra, M., 2002a, Molecular mechanisms of cardiac myofilament activation: Modulation by pH and a troponin T mutant R92Q, Basic Res. Cardiol. 97:I102–I110.

    Article  PubMed  Google Scholar 

  • Solaro, R. J., Wolska, B. M., Arteaga, G., Martin, A. F., Buttrick, P., and de Tombe, P., 2002b, Modulation of Thin Filament Activity in Long and Short Term Regulation of Cardiac Function, in: Molecular Control Mechanisms in Striated Muscle Contraction, R. J. Solaro, R. L. Moss, eds, Kluwer Academic Publishers, Netherlands, pp. 291–327.

    Google Scholar 

  • Suematsu, N., Satoh, S., Kinugawa, S., Tsutsui, H., Hayashidani, S., Nakamura, R., Egashira, K., Makino, N., and Takeshita, A., 2001, Alpha1-adrenoceptor-Gq-RhoA signaling is upregulated to increase myofibrillar Ca2+ sensitivity in failing hearts, Am. J. Physiol. Heart Circ. Physiol. 281:H637–H646.

    PubMed  CAS  Google Scholar 

  • Sumandea, M. P., Pyle, W. G., Kobayashi, T., de Tombe, P. P., and Solaro, R. J., 2003, Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T, J. Biol. Chem. 278:35135–35144.

    Article  PubMed  CAS  Google Scholar 

  • Takimoto, E., Soergel, D. G., Janssen, P. M., Stull, L. B., Kass, D. A., and Murphy, A. M., 2004, Frequency-and afterload-dependent cardiac modulation in vivo by troponin I with constitutively active protein kinase A phosphorylation sites, Circ. Res. 94:496–504.

    Article  PubMed  CAS  Google Scholar 

  • de Tombe, P. P., and Solaro, R. J., 2000, Integration of Cardiac Myofilament Activity and Regulation with Pathways Signaling Hypertrophy and Failure, Ann. Biomed. Eng. 28:991–1001.

    Article  PubMed  Google Scholar 

  • Torsoni, A. S., Fonseca, P. M., Crosara-Alberto, D. P., and Franchini, K. G., 2003, Early activation of p160ROCK by pressure overload in rat heart, Am. J. Physiol. Cell Physiol. 284:C1411–C1419.

    PubMed  CAS  Google Scholar 

  • Urboniene, D., Dias, F., Peña, J. R., Walker, L. A., Solaro, R. J., and Wolska, B. M., 2005, Expression of slow skeletal troponin I in adult mouse heart helps to maintain the left ventricular systolic function during Respiratory Hypercapnia, Circ. Res. 97:70–77.

    Article  PubMed  CAS  Google Scholar 

  • Vahebi, S., Kobayashi, T., Warren, C. M., de Tombe, P. P., and Solaro, R. J., 2005, Functional effects of rho-kinase (ROCK-II)-dependent phosphorylation of specific sites on cardiac troponin, Circ. Res. 96:740–747.

    Article  PubMed  CAS  Google Scholar 

  • Vahebi, S., Manxiang, L., de Tombe, P. P., Wang, Y., and Solaro, R. J., 2003, Activation of p38 MAP Kinase in transgenic mouse hearts depresses cardiac myofilament tension and ATPase rate, J. Mol. Cell Cardiol. 35:A43.

    Google Scholar 

  • Wang, X., and Dhalla, N. S., 2000, Modification of beta-adrenoceptor signal transduction pathway by genetic manipulation and heart failure, Mol. Cell. Biochem. 214:131–155.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Li, M., Spyracopoulos, L., Beier, N., Chandra, M., Solaro, R. J., and Sykes, B. D., 2001, Structure of the C-domain of human cardiac troponin C in complex with the Ca2+-sensitizing drug EMD 57003, J. Biol. Chem. 276:25456–25466.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, M. R., Buck, S. H., Stoker, S. W., Greaser, M. L., and Mentzer, R. M., 1996, Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation, J. Clin. Invest. 98:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Wolska, B. M., Vijayan, K., Arteaga, G. M., Konhilas, J. P., Phillips, R. M., Kim, R., Naya, T., Leiden, J. M., Martin, A. F., de Tombe, P. P., and Solaro, R. J., 2001, Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions, J. Physiol. 536:863–870.

    Article  PubMed  CAS  Google Scholar 

  • Yumoto, F., Lu, Q. W., Morimoto, S., Tanaka, H., Kono, N., Nagata, K., Ojima, T., Takahashi-Yanaga, F., Miwa, Y., Sasaguri, T., Nishita, K., Tanokura, M., and Ohtsuki, I., 2005, Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Biochem. Biophys. Res. Commun. 338:1519–1526.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Solaro, R.J., Arteaga, G.M. (2007). Heart Failure, Ischemia/Reperfusion Injury and Cardiac Troponin. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_17

Download citation

Publish with us

Policies and ethics