Skip to main content

Spinal Cord Lesions in Spinal Hyperostotic Mouse (twy/twy) Simulating Ossification of the Posterior Longitudinal Ligament of the Cervical Spine

  • Chapter
OPLL

Conclusions

In the spinal hyperostotic mouse model (twy/twy), at the C1-C2 level developing calcification and ossification, the area of neuronal soma and the length of the neurites significantly decreased with a decrement in the motoneuron population. The compression significantly decreased the expression levels of BDNF and NT-3, trkB, and trkC compared with the levels in adjacent, less-compressed segments. On the other hand, at other spinal cord segments sustaining less compressive stress, enlargement of the neuronal soma and elongation of neurites were observed in association with increased expression of BDNF, NT-3, and the receptor proteins trkB and trkC. In 20-week-old twy mice, separation of the myelin sheath from the axon and axonal swelling with deformation were signifi cant in association of increased mmunoreactivity to neurofi lament protein and growth-associated protein 43. Targeted retrograde adenovirus-BDNF-gene in vivo delivery via the sternomastoid muscle prevented loss of anterior horn neurons at the site of spinal cord compression, enhanced the expression of BDNF, and increased the activities of choline acetyltransferase and acetylcholine esterase in motoneurons of the twy mouse spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baba H, Furusawa N, Chen Q, Imura S, Tomita K (1995) Anterior decompressive surgery for cervical ossified posterior longitudinal ligament causing myeloradiculopathy. Paraplegia 33:18–24

    PubMed  CAS  Google Scholar 

  2. Baba H, Uchida K, Maezawa Y, Furusawa N, Azuchi M, Imura S (1996) Lordotic alignment and posterior migration of the spinal cord following en bloc open-door laminoplasty for cervical myelopathy: a magnetic resonance imaging study. J Neurol 243:626–632

    Article  PubMed  CAS  Google Scholar 

  3. Baba H, Maezawa Y, Uchida K, Furusawa N, Wada M, Imura S (1997) Plasticity of the spinal cord contributes to neurological improvement in patients treated by cervical decompression: a magnetic resonance imaging study. J Neurol 244:455–460

    Article  PubMed  CAS  Google Scholar 

  4. Furusawa N, Baba H, Imura S, Fukuda M (1996) Characteristics and mechanism of ossification of the posterior longitudinal ligament in the tip-toe walking Yoshimura (twy) mouse. Eur J Histochem 40:199–210

    PubMed  CAS  Google Scholar 

  5. Baba H, Furusawa N, Fukuda M, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K (1997) Potential role of streptozotocin in enhancing ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur J Histochem 41:191–202

    PubMed  CAS  Google Scholar 

  6. Uchida K, Baba H, Maezawa Y, Furukawa S, Furusawa N, Imura S (1998) Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotrophic factors. J Neurol 245:781–793

    Article  PubMed  CAS  Google Scholar 

  7. Frisén J, Verge VMK, Cullheim S, Persson H, Fried K, Middlemas DS, Hunter T, Hökfelt T, Risling M (1992) Increased levels of trkB mRNA and trkB protein-like immunoreactivity in the injured rat and cat spinal cord. Proc Natl Acad Sci USA 89:11282–11286

    Article  PubMed  Google Scholar 

  8. Baba H, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K (1996) Quantitative analysis of the spinal cord motoneuron under chronic compression: an experimental observation in the mouse. J Neurol 243:109–116

    Article  PubMed  CAS  Google Scholar 

  9. Baba H, Maezawa Y, Uchida K, Imura S, Kawahara N, Tomita K, Kudo M (1997) Three-dimensional topographic analysis of spinal accessory motoneurons under chronic mechanical compression: an experimental study in the mouse. J Neurol 244:222–229

    Article  PubMed  CAS  Google Scholar 

  10. Baba H, Maezawa Y, Imura S, Kawahara N, Tomita K (1996) Spinal cord evoked potential for cervical and thoracic compressive myelopathy. Paraplegia 34:100–106

    PubMed  CAS  Google Scholar 

  11. Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18:2167–2173

    Article  PubMed  CAS  Google Scholar 

  12. Yamaura I, Yone K, Nakahara S, Nagamine T, Baba, Uchida K, Komiya S (2002) Mechanism of destructive pathological changes in the spinal cord under chronic mechanical compression. Spine 27:21–26

    Article  PubMed  Google Scholar 

  13. Uchida K, Baba H, Furukawa S, Omiya M, Kokubo Y, Nakajima H (2003) Increased expression of neurotrophins and their receptors in the mechanically compressed spinal cord of the spinal hyperostotic mouse (twy/twy). Acta Neuropathol (Berl) 106:29–36

    CAS  Google Scholar 

  14. Uchida K, Baba H, Maezawa Y, Kubota C (2002) Progressive changes of neurofilament 68 and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine 27:480–486

    Article  PubMed  Google Scholar 

  15. Baba H, Uchida K, Sadato N, Yonekura Y, Kamoto Y, Maezawa Y, Furusawa N, Abe S (1999) Potential usefulness of 18F-2-fluoro-deoxy-D-glucose-positron emission tomography in cervical compressive myelopathy. Spine 24:1449–1454

    Article  PubMed  CAS  Google Scholar 

  16. Uchida K, Kobayashi S, Yayama T, Kokubo Y, Nakajima H, Sadato N, Yonekura Y, Baba H (2004) Metabolic neuroimaging of the cervical spinal cord in patients with compressive myelopathy: a high-resolution emission tomography study. J Neurosurg Spine 1:72–79

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Baba, H. et al. (2006). Spinal Cord Lesions in Spinal Hyperostotic Mouse (twy/twy) Simulating Ossification of the Posterior Longitudinal Ligament of the Cervical Spine. In: Yonenobu, K., Nakamura, K., Toyama, Y. (eds) OPLL. Springer, Tokyo. https://doi.org/10.1007/978-4-431-32563-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-32563-5_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-32561-1

  • Online ISBN: 978-4-431-32563-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics