Skip to main content

Zusammenfassung

In seltenen Fällen werden biologische Proben direkt, ohne weitere Bearbeitung, im Licht- oder gar im Elektronenmikroskop betrachtet. Die meisten Fragestellungen und die meisten Objekte erfordern eine mehr oder weniger umfangreiche Präparation. Das folgende, ebenfalls recht umfangreiche Kapitel gibt einen Einstieg in die vielfältigen Möglichkeiten, mikroskopische Präparate für licht- und elektronenmikroskopische Untersuchungen herzustellen. Die detaillierten Anleitungen stehen beispielhaft für ähnliche Untersuchungsziele und -objekte. Mit Hilfe der Erklärungen im Text können sie für eigene Fragestellungen abgewandelt, ergänzt oder miteinander kombiniert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.8 Literatur

Literatur Kapitel 2.1.1–2.1.3

  • Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens PI, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9(2):48–52

    Article  PubMed  CAS  Google Scholar 

  • Bates IR, Wiseman PM, Hanrahan JW (2006) Investigating membrane protein dynamics in living cells. Biochem Cell Biol 84(6):825–31

    Article  PubMed  CAS  Google Scholar 

  • Choi HS, Kim JW, Cha YN, Kim C (2006) A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoassay Immunochem 27(1):31–44

    Article  PubMed  CAS  Google Scholar 

  • Dahl LK (1952) A simple and sensitive histochemical method for calcium. Proc Soc exp Biol Med 80:474–479

    PubMed  CAS  Google Scholar 

  • Day RN, Schaufele F (2005) Imaging molecular interactions in living cells. Mol Endocrinol 19(7):1675–1686

    Article  PubMed  CAS  Google Scholar 

  • Doan CA, Ralph P (1950) In: Handbook of microscopical Technique. McClung CE (ed), Paul B Hoeber, New York, NY

    Google Scholar 

  • Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132(17):3963–3976.

    Article  PubMed  CAS  Google Scholar 

  • Fricker M, Runions J, Moore I (2006) Quantitative Fluorescence Microscopy: From Art to Science. Annu Rev Plant Biol 2006.57:79–107

    Article  PubMed  CAS  Google Scholar 

  • Gennerich A (2003) Fluoreszenskorrelationsspektroskopie und Rasterkorrelationsmikroskopie molekularer Prozesse in Nervenzellen. Dissertation, Georg-August-Universität zu Göttingen, Göttingen. http://webdoc.sub. gwdg.de/diss/2003/gennerich/gennerich.pdf

    Google Scholar 

  • Gilbert D (2006) Chlorid-basierte Signalverstärkung in Capsaicin-sensitiven Schmerzzellen. Dissertation, Ruprecht-Karls-Universität Heidelberg. http://www.ub.uni-heidelberg.de/archiv/6711/

    Google Scholar 

  • Goldman RD, Spector DL (2005) Live cell imaging: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Hebert TE, Gales C, Rebois RV (2006) Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques. Cell Biochem Biophys 45(1):85–109. Review

    Article  PubMed  CAS  Google Scholar 

  • Hoebe RA, Van Oven CH, Gadella TWJ, Dhonukshe Jr. PB, Van Noorden CJF, Manders EMM (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature Biotechnol 25:249–253

    Article  CAS  Google Scholar 

  • Kanbar G, Engels W, Nicholson GJ, Hertle R und Winkelmann G (2004) Tyramine functions as a toxin in honey bee larvae during Varroa-transmitted infection by Melissococcus pluton. FEMS Microbiol Lett 234:149–154

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson ML (1992) Fluorescence lifetime imaging. Analytical Biochem 202: 316–330

    Article  CAS  Google Scholar 

  • Martin RM, Leonhardt H, Cardoso MC (2005) DNA labeling in living cells. Cytom Part A 67A:45–52

    Article  CAS  Google Scholar 

  • Martin RM, Tunnemann G, Leonhardt H, Cardoso MC (2007) Nucleolar marker for living cells. Histochem Cell Biol 127:243–251

    Article  PubMed  CAS  Google Scholar 

  • Palmisano R (2004) Fluoreszenz-Resonanz-Energie-Transfer-basierter spezifischer Nachweis von mRNA in vitro und in situ. Dissertation, Universität Bielefeld. http:// bieson.ub.uni-bielefeld.de/volltexte/2004/476/pdf/ Dissertation_Palmisano.pdf

    Google Scholar 

  • Presley JF (2005) Imaging the secretory pathway: the past and future impact of live cell optical techniques. Biochim Biophys Acta. 1744(3):259–272. Review

    Article  PubMed  CAS  Google Scholar 

  • Rigler R, Elson E (2001) Fluorescence Correlation Spectroscopy. Springer Verlag

    Google Scholar 

  • Romeis, B (1989) Mikroskopische Techniken. Böck P (ed), München: Urban und Schwarzenberg

    Google Scholar 

  • Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One-and Two-Photon Excitation. Biophys J 77:2251–2265

    Article  PubMed  CAS  Google Scholar 

  • Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294(5548):1929–1932

    Article  PubMed  CAS  Google Scholar 

  • Stockinger L (1964) Vitalfärbung und Vitalfluorochromierung tierischer Zellen. In: Protoplasmatologia Handbuch der Protoplasmaforschung. Alfert M, Bauer H, Harding CV. (eds), Wien: Springer Verlag.

    Google Scholar 

Literatur Kapitel 2.1.4 Originalliteratur

  • Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    PubMed  CAS  Google Scholar 

  • Bender KJ, Rangel J und Feldman DE (2003) Development of columnar topography in the excitatory layer 4 to layer 2/3 projection in rat barrel cortex. J Neurosci 23:8759–8770

    PubMed  CAS  Google Scholar 

  • Chen S und Aston-Jones G (1998) Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool. Neuroscience 82:1151–1163

    Article  PubMed  CAS  Google Scholar 

  • Dugladze T, Heinemann U, Gloveli T (2001) Entorhinal cortex projection cells to the hippocampal formation in vitro. Brain Res 905:224–231

    Article  PubMed  CAS  Google Scholar 

  • Hellmann B, Manns M und Güntürkün O (2001) Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigeons. J Comp Neurol 436:153–166

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM und Raine L (1981) Protein A, avidin, and biotin in immunohistochemistry. J Histochem Cytochem 29:1349–1353

    PubMed  CAS  Google Scholar 

  • Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351 (http://www.unav.es/neurologia/ Lanciego/kobbert00.htm#_Toc467309232)

    Article  PubMed  Google Scholar 

  • Kelso SR, Nelson DO, Silva NL und Boulant JA (1983) A slice chamber for intracellular and extracellular recording during continuous perfusion. Brain Res Bull 10:853–857

    Article  PubMed  CAS  Google Scholar 

  • Kreck G, Nixdorf-Bergweiler BE (2005) Evidence for a cortical-basal ganglia projection pathway in female zebra finches. NeuroReport 16(1):21–24.

    Article  PubMed  Google Scholar 

  • Luppi PH, Fort P und Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224

    Article  PubMed  CAS  Google Scholar 

  • Oztas E (2003) Neuronal tracing. Neuroanatomy 2:2–5 (http://www.neuroanatomy.org/2003/002_005.pdf)

    Google Scholar 

  • Sakanaka M, Shibasaki T und Lederis K (1987) Improved fixation and cobalt-glucose oxidase-diaminobenzidine intensification for immunohistochemical demonstration of corticotropin-releasing factor in rat brain. J Histochem Cytochem 35:207–212

    PubMed  CAS  Google Scholar 

  • Schmued LC und Snavely LF (1993) Photoconversion and electron microscopic localization of the fluorescent axon tracer fluoro-ruby (rhodamine-dextran-amine). J Histochem Cytochem 41:777–782

    PubMed  CAS  Google Scholar 

  • Shu SY, Ju G und Fan LZ (1988) The glucose oxidase-DABnickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171

    Article  PubMed  CAS  Google Scholar 

  • Staiger JF, Schubert D, Zuschratter W, Kotter R, Luhmann HJ und Zilles K (2002) Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex. Eur J Neurosci 16:11–20

    Article  PubMed  Google Scholar 

  • Veenman CL, Reiner A und Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies. J Neurosci Methods 41:239–254

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Dermietzel R (1999). Methoden der Neurohistologie. Spektrum Akademischer Verlag GmbH, Heidelberg

    Google Scholar 

Zusammenfassende Literatur und nützliche Links

  • Manns M (1998) Die Ontogenese visueller Lateralisation bei der Taube (Columba Livia): Entwicklung und Plastizität des Systems. Dissertation: Ruhr-Universität Bochum, Fakultät für Psychologie (http://www-brs.ub.ruhr-unibochum. de/netahtml/HSS/Diss/MannsMartina/)

    Google Scholar 

  • von Bohlen und Halbach O und Dermietzel R (1999). Methoden der Neurohistologie. Spektrum Akademischer Verlag GmbH.

    Google Scholar 

  • Wilhelmi E (2000). Die neuronale Verschaltung der thalamoamygdalofugalen Projektion zum cholinergen basalen Vorderhirn (Substantia innominata). Dissertation: Otto-von-Guericke-Universität Magdeburg. (http://diglib.unimagdeburg. de/Dissertationen/2000/ecwilhelmi.pdf)

    Google Scholar 

Literatur Kapitel 2.2

  • Alexander RR and Griffiths JM (1993) Basic Biochemical Methods. Wiley-Liss, Inc, New York

    Google Scholar 

  • Darzynkiewicz Z, Robinson JP, Crissman HA (1994) Flow Cytometry. 2nd Ed., Academic Press, San Diego

    Google Scholar 

  • Dashek WV (2000) Methods for the Identification of isolated Plant Cell Organelles. In: Dashek WV (Ed.) Methods in Plant Electron Microscopy and Cytochemistry. Humana Press, Totowa, New Jersey

    Chapter  Google Scholar 

  • Harrison DD und Webster HL (1969) The preparation of isolated intestinal crypt cells. Exptl Cell Res 55: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Radbruch A (2000) Flow Cytometry and Cell Sorting. Springer Verlag, Heidelberg

    Google Scholar 

  • Robinson DG and Hinz G (2001) Organelle isolation. In: Hawes C and Satiat-Jeunemaitre B (Eds) Plant Cell Biology, 2nd Edition, Oxford University Press

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. 16. Auflage. R Oldenbourg Verlag, München, Wien

    Google Scholar 

  • Shapiro, HM (2003) Practical Flow Cytometry 4th Edition. Wiley-Liss, New York

    Google Scholar 

  • Towler CM, Pugh-Humphreys GP and Porteau JW (1978) Characterization of columnar absorptive epithelial cells isolated from rat jejunum. J Cell Sci 29: 53–75

    PubMed  CAS  Google Scholar 

Literatur Kapitel 2.3

  • Chu W-S, Liang Q, Tang Y, King R, Wong K, Gong M, Wei M, Liu J, Feng S-H, Lo S-C, Andriko J-A and Orr M (2006) Ultrasound-acceralted tissue fixation/processing achieves superior morphology and macromolecule integrity with storage stability. J Histochem Cytochem 54:503–513

    Article  PubMed  CAS  Google Scholar 

  • Giberson RT and Demaree RS Jr (Eds) (2001) Microwave techniques and protocols. Humana Press, Totowa, New Jersey

    Google Scholar 

  • Haidenhain M (1908) Über Vanadiumhämatoxylin, Pikroblauschwarz und Kongo-Korinth. Z Wiss Mikr 25:401–410

    Google Scholar 

  • Hauser M (1978) Demonstration of membrane-associated and oriented microfibrils in Amoeba proteus by means of a Schiff base/glutaraldehyde fixative. Cytobiologie 18:95–106

    PubMed  CAS  Google Scholar 

  • Hayat MA (1989) Principles and Techniques of Electron Microscopy. Biological Applications. Third Edition, CRC Press Inc., Boca Raton, Florida

    Google Scholar 

  • Kardasewitsch B (1925) Eine Methode zur Beseitigung der Formalinsedimente (Paraform) aus mikroskopischen Präparaten. Z Wiss Mikr 42:322–324

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137a

    Google Scholar 

  • Zakolar M and Erk I (1977) Phase-partition fixation and staining of Drosophila eggs. Stain Technology 52:89–95

    Google Scholar 

Literatur Kapitel 2.4.1

  • Bennett H S, Wyrick A D, Lee S W, McNeil J H (1976) Science and art inpreparing tissues embedded in plastic for light microscopy, with special reference to glycerol methacrylate, glass knifes and simple stains. Stain Technol 51: 71–97

    PubMed  CAS  Google Scholar 

  • Chesterman W, Leach E H (1949) Low viscosity nitrocellulose for embedding tissues. Quart J Micr Sci 20:431–434

    Google Scholar 

  • Dietrich A (1929) Isopropylalkohol für histologische Zwecke. Zbl allg Path pathol Anat 47: 83

    Google Scholar 

  • Doxtader E K (1948) Isopropyl-Alcohol in the paraffin infiltration technique. Stain technol 23: 1–2.

    PubMed  CAS  Google Scholar 

  • Gerrits P O, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycolmethacrylate and subsequent preparing of serial sections. J Microscopy 132: 81–85

    CAS  Google Scholar 

  • Lamb R A (1973) Waxes for histology. In: Histopathology, selected topics. (H C Cook, ed), p 123. Bailliére Tindall, London

    Google Scholar 

  • Robinson H D, Fayen A W (1965) One-hour processing of tissue. Am J clin Path 43:91–92

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. 16. Ed. R Oldenbourg Verlag, München, Wien

    Google Scholar 

  • Romeis B (1989) Mikroskopische Technik. 17. Ed. R Oldenbourg Verlag, München, Wien, Baltimore

    Google Scholar 

  • von Apáthy S (1912) Neuere Beiträge zur Schneidetechnik. Z wiss Mikr: 449–515

    Google Scholar 

Literatur Kapitel 2.4.2 Zusammenfassende Literatur

  • Bozzola JJ and Russell LD (1998) Electron Microscopy. Principles and Techniques for Biologists. Jones & Bartlett Publishing

    Google Scholar 

  • Dashek WV (Ed) (2000) Methods in Plant Electron Microscopy and Cytochemistry. Humana Press

    Google Scholar 

  • Glauert AM and Lewis PR (Eds) (1998) Biological Specimen Preparation for Transmission Electron Microscopy (Practical Methods in Electron Microscopy). Portland Press Ltd

    Google Scholar 

  • Hayat MA (1989) Principles and Techniques of Electron Microscopy. Biological Applications. Third Edition, CRC Press Inc., Boca Raton, Florida

    Google Scholar 

  • Hayat MA (2000) Principles and Techniques of Electron Microscopy. Biological Applications. Fourth Edition, Cambridge University Press

    Google Scholar 

Einzelpublikationen

  • Brilakis HS, Hann CR and Johnson DH (2001) A comparison of different embedding media on the ultrastructure of the trabecular meshwork. Curr Eye Res 22(3):235–244

    Article  PubMed  CAS  Google Scholar 

  • Hillmer S, Joachim S and Robinson DG (1991) Rapid polymerization of LR-white for immunocytochemistry. Histochemistry 95:315–318

    Article  PubMed  CAS  Google Scholar 

  • Richardson KC, Jarrett L and Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology 35:313

    PubMed  CAS  Google Scholar 

  • Steiner M, Schöfer C and Mosgoeller W (1994) In situ flat embedding of monolayers and cell relocation in the acrylic resin LR White for comparative light and electron microscopy. Histochem J 26:934–938

    PubMed  CAS  Google Scholar 

  • Tolivia J, Navarro A and Tolivia D (1994) Polychromatic staining of epoxy sections: a new and simple method. Histochemistry 101:51–55

    Article  PubMed  CAS  Google Scholar 

Literatur Kapitel 2.5

  • Barlow, D.I. and Sleigh, M.A. (1979) Freeze substitution for preservation of ciliated surfaces for scanning electron microscopy. J. Microscopy 115: 81–95.

    CAS  Google Scholar 

  • Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer LC and Michael JR (2003) Scanning Electron Microscopy and X-ray Microanalysis. 3. Ed Springer

    Google Scholar 

  • Eisenbeis, G. und Wichard, W. (1985) Atlas zur Biologie der Bodenarthropoden, Gustav Fischer Verlag.

    Google Scholar 

  • Ensikat, H.J. and Barthlott, W. (1993) Liquid substitution: a versatile procedure für SEM specimen preparation of biological materials without drying or coating. J. Microscopy 172: 195–203.

    CAS  Google Scholar 

  • Flegler SL, Heckman JW, Klomparens KL (1995) Scanning and Transmission Electron Microscopy: An Introduction Oxford University Press, USA

    Google Scholar 

  • Hayes, T.L. (1973) Scanning Electron microscope Techniques in Biology. In: Koehler, J.K (Ed) Advanced Techniques in Biological Electron Microscopy. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Ohnesorge, J. und Holm, R. (1978) Rasterelektronenmikroskopie — Eine Einführung für Mediziner und Biologen. Scanning Electron Microscopy — An Introduction for Physicians and Biologists. 2nd Ed. Georg Thieme Publishers Stuttgart

    Google Scholar 

  • Reimer, L. und Pfefferkorn, G. (1973) Raster-Elektronenmikroskopie. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Rosenbauer, K.A. und Kegel, B.H. Rasterelektronenmikroskopische Technik, Päparationsverfahren in Medizin und Biologie, (1978), Thieme Verlag.

    Google Scholar 

  • Wallace, I.P. and Fischman, D.A. (1979) High resulotion scanning electron microscopy of isolated and in situ cytoskeletal elements. J. Cell Biol. 83: 249–254.

    Article  Google Scholar 

  • Wichard, W., Arens, W. und Eisenbeis, G. (1995) Atlas zur Biologie der Wasserinsekten, Gustav Fischer Verlag.

    Google Scholar 

Literatur Kapitel 2.6 Zusammenfassende Literatur

  • Brooks SA, Leathem AJC and Schumacher U (1997) Lectin Histochemistry. A concise practical handbook. BIOS Scientific Publishers Limited, Oxford

    Google Scholar 

  • Hayat MA (1989) Principles and Techniques of Electron Microscopy. Biological Applications. Third Edition, CRC Press Inc., Boca Raton, Florida

    Google Scholar 

  • Hayat MA and Miller SE (1990) Negative Staining. McGraw-Hill Inc., US

    Google Scholar 

  • Lewis PR (1977) Staining Methods for Sectioned Material. Practical Methods in Electron Microscopy, vol 5, Elsevier Science Ltd.

    Google Scholar 

  • Neiss WF (1986) Ultracytochemistry of intracellular membrane glycoconjugates. Advances in Anatomy, Embryology and Cell Biology vol. 99, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Scott JE (1985) Proteoglycan Histochemistry — a Valuable Tool for Biochemists. Coll Rel Res 5, 541–598

    CAS  Google Scholar 

  • Wohlrab F und Gossrau R (1992) Katalytische Enzymhistochemie. Grundlagen und Methoden für die Elektronenmikroskopie. Gustav Fischer Verlag, Jena

    Google Scholar 

Originalartikel

  • Bestwick CS, Brown IR, Bennet MHR and Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. The Plant Cell 9:209–221

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi Y, Sakagami T and Yamada K (1990) Electron microscopic visualization of acidic glycoconjugates by means of postembedding procedures using ruthenium red and tungstate. Acta Histochem Cytochem 23:165–173

    CAS  Google Scholar 

  • Mentré P and Halpern S (1988a) Localization of cations by pyroantimonate. I. Influence of fixation on distribution of calcium and sodium. An approach by analytical ion microscopy. J Histochem Cytochem 36:49–54

    PubMed  Google Scholar 

  • Mentré P and Halpern S (1988b) Localization of cations by pyroantimonate. II. Electron probe microanalysis of calcium and sodium in skeletal muscle of mouse. J Histochem Cytochem 36:55–64

    PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS and Schulte BA (1992) Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem 40:1–38

    PubMed  CAS  Google Scholar 

Literatur Kapitel 2.7

  • Carlemalm E, Garavito RM and Villinger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc 126:123–143

    CAS  Google Scholar 

  • Costello MJ, Fetter R and Höchli M (1981) Simple procedures for evaluating the cryofixation of biological samples. J Microsc 125:125–136

    Google Scholar 

  • Fernandez-Moran H (1952) Application of the ultrathin freezing-sectioning technique to the study of cell structures with the electron microscope. Ark Fys 4:471–491

    Google Scholar 

  • Hohenberg H, Mannweiler K and Müller M (1994) High-pressure freezing of cell suspensions in cellulose capillary tubes. J Microsc. 175:34–43

    PubMed  CAS  Google Scholar 

  • McIntyre JA, Gilula NB and Karnovsky MJ (1974) Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. J Cell Biol 60:192–203

    Article  PubMed  CAS  Google Scholar 

  • Moor H, Bellin G, Sandri C and Akert K (1980) The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res 209:201–216

    Article  PubMed  CAS  Google Scholar 

  • Moor H (1987) Theory and practise of high pressure freezing. In: Steinbrecht RA Zierold K (Eds) Cryotechniques in biological electron microscopy. Springer, Berlin Heidelberg New York pp 175–191

    Google Scholar 

  • Müller M, Meister N and Moor H (1980) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie (Wien) 36: 129–140

    Google Scholar 

  • Müller M and Moor H (1984) Cryofixation of thick specimens by high pressure freezing. Scanning Electron Microsc 1984:131–138

    Google Scholar 

  • Müller-Reichert T, Hohenberg H, O’Toole ET and McDonald K (2003) Cryoimmobilization and three dimensional visualization of C. elegans ultrastructure. J Microsc 212:71–80

    Article  PubMed  Google Scholar 

  • Pfeiffer S, Vielhaber G, Vietzke JP, Wittern KP, Hintze U, and Wepf R (2000) High-pressure freezing provides new information on human epidermis: Simultaneous protein antigen and lamellar lipid structure preservation. Study on human epidermis by cryoimmobilization. J Invest Dermatol 114:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer S and Krupinska K (2005) Chloroplast Ultrastructure in Leaves of Urtica dioica L. Analyzed after Highpressure freezing and freeze-substitution and compared with conventional fixation followed by room temperature dehydration. Microscopy Research and Technique 68:368–379

    Article  PubMed  Google Scholar 

  • Plattner H and Bachmann L (1982) Cryofixation of biological materials for electron microscopy by the methods of spray, sandwich-, cryogen-jet-and sandwich-cryogen-jet-freezing: a comparison of techniques. In: Revel JP, Barnard T Haggis GH (Eds) Science of biological specimen preparation, Vol 2 Chicago, SEM Inc, AMF O’Hare, Chicago. 139–147

    Google Scholar 

  • Riehle U and Höchli M (1973) The theory and technique of high pressure freezing. In: Benedetti EL and Favard P (Eds) Freeze etching technique and application. Société Francaise de Microscopie Electronique, Paris. 31–60

    Google Scholar 

  • Studer D, Graber W, AlAmoudi A and Eggli P (2001) A new approach for cryofixation by high-pressure freezing machine. J Microsc 203:285–294

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1973) A technique for ultracrytomy of cell suspensions and tissues. J Cell Biol 57: 551–565

    Article  PubMed  CAS  Google Scholar 

  • Welter K, Müller M and Mendgen K (1988) The hyphae of Uromyces appendiculatus within the leaf tissue after high pressure freezing and freeze substitution. Protoplasma 147:91–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Aescht, E. et al. (2010). Präparationsmethoden. In: Mulisch, M., Welsch, U. (eds) Romeis Mikroskopische Technik. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2254-5_2

Download citation

Publish with us

Policies and ethics