Skip to main content

Qualitative und Quantitative Analyse in der Mikroskopie

  • Chapter
Romeis Mikroskopische Technik

Zusammenfassung

Die Aufnahme und anschlieβende Analyse mikroskopischer Bilder hat sich in den letzten Jahren rasant verändert und befindet sich mit der technischen Weiterentwicklung immer sensitiverer und schnellerer Kameras sowie mit den wachsenden Anforderungen in Forschung und Diagnostik in stetem Fortschritt. Vorbei sind die Zeiten, in denen Spiegelreflexkameras mühsam an Mikroskope adaptiert wurden und ein langwieriger Entwicklungsprozess der Bilder abgewartet werden musste, bevor über die Qualität der mikroskopischen Bilder entschieden werden konnte, und eine qualitative und quantitative Analyse der Forschungsergebnisse möglich war.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.7 Literatur

  • Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16: 1055–1069

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Elangovan E, Periasamy E (2005) FRET Data Analysis: The Algorithm. In: Periasamy and Day (Hrsg) Molecular Imaging: FRET Microscopy and Spectroscopy, Oxford University Press, Vew York. 126–145

    Google Scholar 

  • Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6: 166–175

    Article  Google Scholar 

  • Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys (Leipzig) 2: 55–75

    Article  Google Scholar 

  • Hachét-Haas M, Converset N, Marchal O, Matthes H, Gioria S, Galzi JL, Lecat S (2006) FRET and colocalization analyzer—a method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an Image J Plug-in. Microsc Res Tech 69(12):941–56

    Article  PubMed  Google Scholar 

  • Heinzinger H, van den Boom F, Tinel H, Wehner F (2001) In rat hepatocytes, the hypertonic activation of Na(+) conductance and Na(+)-K(+)-2Cl(−) symport — but not Na(+)-H(+) antiport-is mediated by protein kinase C. J Physiol, 536(Pt 3):703–15

    Article  CAS  PubMed  Google Scholar 

  • Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Juan D, del Sol A, Soriano SF, Roncal F, Gomez L, Valencia A

    Google Scholar 

  • Martinez-A C, Mellado M (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5(2):216–23.

    Article  Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2003). Development and use of fluorescent protein markers in living cells. Science 300(5616):87–91

    Article  CAS  PubMed  Google Scholar 

  • Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Photoactivatable fluorescent proteins. Nature Reviews Mol Cell Biol 6: 885–891

    Article  CAS  Google Scholar 

  • Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of object in dual-colour confocal images. J Microsc 169: 375–382

    Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 3886(6645):882–7

    Google Scholar 

  • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101(29):10554–9

    Article  CAS  PubMed  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–77

    Article  CAS  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer A, Tsien RY (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Tyska MJ, Mooseker MS (2002). MYO1A (Brush Border Myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys J 82:1869–1883

    Article  CAS  PubMed  Google Scholar 

  • van den Boom F, Uhlenbrock K, Düssmann H, Abouhamed M, Bähler M (2007). The myosin IXb motor activity targets the myosin IXb Rho GAP domain as cargo to sites of active actin polymerization. Mol Biol Cell 18: 1507–1518

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Aescht, E. et al. (2010). Qualitative und Quantitative Analyse in der Mikroskopie. In: Mulisch, M., Welsch, U. (eds) Romeis Mikroskopische Technik. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2254-5_13

Download citation

Publish with us

Policies and ethics