Skip to main content

An Automatic Thresholding Approach to Gene Expression Analysis

  • Conference paper
COMPSTAT 2004 — Proceedings in Computational Statistics

Abstract

The statistical problems of gene expression analysis based on the two popular array readout methods, cDNA and Affymetrix, are addressed. As an alternative to multiple frequentist statistical testing the empirical Bayes methodology is introduced. An empirical Bayes thresholding approach is described and its relevance for microarray data analysis is shown. Finally two data sets, one of cDNA-type and the other of Affymetrix-type, are analyzed with the new automatic and computationally efficient thresholding technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich F., Benjamini Y., Donoho D.L., Johnstone I.M. (2002). Adapting to unknown sparsity by controlling the false discovery rate. Preprint.

    Google Scholar 

  2. Affymetrix (1999). Affymetrix microarray suite user guide. Affymetrix, Santa Clara, CA.

    Google Scholar 

  3. Baldi P., Hatfield G.W. (2002). DNA microarrays and gene expression. From experiments to data analysis and modeling. Cambridge University Press, Cambridge.

    Google Scholar 

  4. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Royal Statist. Soc., B 85, 289–300.

    MathSciNet  Google Scholar 

  5. Efron B., Morris C. (1973). Combining possibly related estimation problems (with discussion). J. Royal Statist. Soc. B 35, 379–421.

    MATH  MathSciNet  Google Scholar 

  6. Efron B., Tishirani R.J. (1993). An introduction to the Bootstrap. Chapman & Hall, London.

    Book  MATH  Google Scholar 

  7. Efron B., Tishirani R.J., Storey J.D., Tusher V. (2001). Empirical Bayes analysis of a microarray experiment. J. Amer. Statist. Assoc. 96, 1151–1160.

    Article  MATH  MathSciNet  Google Scholar 

  8. Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield CD., Lander E.S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537.

    Article  Google Scholar 

  9. Ihaka R., Gentleman R. (1996). R: A language for data analysis and graphics. J. Computat. Graph. Statist. 5, 299–314.

    Google Scholar 

  10. Johnstone I.M., Silverman B.W. (2004). Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. To appear in Annal. Statist.

    Google Scholar 

  11. Newton M.A., Kendziorski C.M., Richmond C.S., Blattner F.R. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. J. Computat. Biol. 8, 37–52.

    Article  Google Scholar 

  12. Nguyen D.V., Arpat A.B., Wang N., Carroll R.J. (2002). DNA microarray experiments: Biological and technological aspects. Biometrics 58, 701–717.

    Article  MATH  MathSciNet  Google Scholar 

  13. Schena A.M., Shalon D., Davis R.W., Brown P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  Google Scholar 

  14. Storey J. D. (2002). A direct approach to false discovery rates. J. Royal Statist. Soc. B 64, 479–498.

    Article  MathSciNet  Google Scholar 

  15. Storey J.D., Tibshirani R. (2003). SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In Parmigiani G., Garrett E.S., Irizarry R.A., Zeger S.L. (ed.) The analysis of gene expression data. Methods and software. Springer-Verlag, New York, 272–290.

    Chapter  Google Scholar 

  16. Tusher V., Tibshirani R., Chu C. (2001). Significance analysis of microarray applied to transcriptional responses to ionizing radiation. Proceedings of the National Academy of Sciences 98, 5116–5121.

    Article  MATH  Google Scholar 

  17. Westfall P.H., Young S.S. (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schimek, M.G., Schmidt, W. (2004). An Automatic Thresholding Approach to Gene Expression Analysis. In: Antoch, J. (eds) COMPSTAT 2004 — Proceedings in Computational Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2656-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-2656-2_35

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1554-2

  • Online ISBN: 978-3-7908-2656-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics