Skip to main content

Embedding Methods and Robust Statistics for Dimension Reduction

  • Conference paper
COMPSTAT 2004 — Proceedings in Computational Statistics

Abstract

Recently, several non-deterministic distance embedding methods that can be used for fast dimension reduction have been proposed in the machine learning literature. These include FastMap, MetricMap, and SparseMap. Among them, FastMap, implicitly assumes that the objects are points in a p-dimensional Euclidean space. It selects a sequence of kp orthogonal axes defined by distant pairs of points (called pivots) and computes the projection of the points onto the orthogonal axes. We show that FastMap picks all of its pivots from the vertices of the convex hull of the data points in the original implicit Euclidean space. This provides a connection to results in robust statistics, where the convex hull is used as a tool in multivariate outlier detection and in robust estimation methods. The connection sheds a new light on some properties of FastMap and provides an opportunity for a robust class of dimension reduction algorithms that we call RobustMaps, which retain the speed of FastMap and exploit ideas in robust statistics. One simple RobustMap algorithm is shown to outperform principal components on contaminated data both in terms of clean variance captured and in terms of time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam F.N., Samatova N., Ostrouchov G., Langston M.A., Geist A. (2002). Distributed dimension reduction algorithms for widely dispersed data. In Parallel and Distributed Computing and Systems, ACTA Press, 174–178.

    Google Scholar 

  2. D. O. E. (1990). Atmospheric radiation measurement program plan. Technical Report DOE/ER-0441, U. S. Department of Energy,Oce of Health and Environmental Research, Atmospheric and Climate Research Division, National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

    Google Scholar 

  3. Donoho D.L., Huber P.J. (1983). The notion of breakdown-point. In Bickel, Doksum, and Hodges, (eds), Festschrift fur Erich L. Lehmann, Belmont, CA, Wadsworth 157–184.

    Google Scholar 

  4. Downing D.J., Fedorov V.V., Lawkins W.F., Morris M.D., Ostrouchov G. (2000). Large data series: Modeling the usual to identify the unusual. Computational Statistics & Data Analysis 32 245–258.

    Article  MATH  Google Scholar 

  5. Erickson J. (1999). New lower bounds for convex hull problems in odd dimensions. SIAM J. Comput. 28(4), 1198–1214.

    Article  MATH  MathSciNet  Google Scholar 

  6. Faloutsos C., Lin K. (1995). FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia dataseis. In ACM SIGMOD Conference, San Jose, CA, May 1995, 163–174.

    Google Scholar 

  7. Gallier J.H. (2000). Geometric methods and applications for computer science and engineering. Springer.

    Google Scholar 

  8. Hjaltason G.R., Samet H. (2003). Properties of embedding methods for similarity searching in metric spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 530–549.

    Article  Google Scholar 

  9. Hotelling H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 24, 417–441, 498-520.

    Article  Google Scholar 

  10. Huber P.J. (1972). Robust statistics: A review. Annals Mathematical Statistics 43(4), 1041–1067.

    Article  MATH  Google Scholar 

  11. Huber P.J. (1981). Robust statistics. John Wiley & Sons, New York.

    Book  MATH  Google Scholar 

  12. Ruts I., Rousseeuw P.J. (1996). Computing depth contours of bivariate point clouds. Computational Statistics & Data Analysis 23, 153–168.

    Article  MATH  Google Scholar 

  13. Stewart G.W. (1999). The QLP approximation to the singular value decomposition. SIAM J. Sci. Comput. 20(4), 1336–1348.

    Article  MATH  MathSciNet  Google Scholar 

  14. Torgerson W.S. (1952). Multidimensional scaling i: Theory and method. Psychometrika 17, 401–419.

    Article  MATH  MathSciNet  Google Scholar 

  15. Ziegler G.M. (1995). Lectures on polytopes. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ostrouchov, G., Samatova, N.F. (2004). Embedding Methods and Robust Statistics for Dimension Reduction. In: Antoch, J. (eds) COMPSTAT 2004 — Proceedings in Computational Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2656-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-2656-2_29

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1554-2

  • Online ISBN: 978-3-7908-2656-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics