Skip to main content

Data Augmentation and MCMC for Binary and Multinomial Logit Models

  • Chapter
  • First Online:
Statistical Modelling and Regression Structures

Abstract

The paper introduces two new data augmentation algorithms for sampling the parameters of a binary or multinomial logit model from their posterior distribution within a Bayesian framework. The new samplers are based on rewriting the underlying random utility model in such away that only differences of utilities are involved. As a consequence, the error term in the logit model has a logistic distribution. If the logistic distribution is approximated by a finite scale mixture of normal distributions, auxiliary mixture sampling can be implemented to sample from the posterior of the regression parameters. Alternatively, a data augmented Metropolis–Hastings algorithm can be formulated by approximating the logistic distribution by a single normal distribution. A comparative study on five binomial and multinomial data sets shows that the new samplers are superior to other data augmentation samplers and to Metropolis–Hastings sampling without data augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, J. H. & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association 88: 669–679.

    Article  MATH  MathSciNet  Google Scholar 

  • Andrews, D. F. & Mallows, C. L. (1974). Scale mixtures of normal distributions, Journal of the Royal Statistical Society, Ser. B 36: 99–102.

    MATH  MathSciNet  Google Scholar 

  • Balakrishnan, N. (ed.) (1992). Handbook of the Logistic Distribution, Marcel Dekker, New York.

    MATH  Google Scholar 

  • Chib, S. (1995). Marginal likelihood from the Gibbs output, Journal of the American Statistical Association 90: 1313–1321.

    Article  MATH  MathSciNet  Google Scholar 

  • Dellaportas, P. & Smith, A. F. M. (1993). Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling, Applied Statistics 42: 443–459.

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L. & Kaufmann, H. (1986a). Asymptotic inference in discrete response models, Statistical Papers 27: 179–205.

    MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L. & Kaufmann, H. (1986b). Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, The Annals of Statistics 13: 342–368.

    Article  MathSciNet  Google Scholar 

  • Fahrmeir, L. & Tutz, G. (2001). Multivariate Statistical Modelling based on Generalized Linear Models, Springer Series in Statistics, 2nd ed., Springer, New York/Berlin/Heidelberg.

    MATH  Google Scholar 

  • Frühwirth-Schnatter, S. & Frühwirth, R. (2007). Auxiliary mixture sampling with applications to logistic models, Computational Statistics and Data Analysis 51: 3509–3528.

    Article  MATH  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S., Frühwirth, R., Held, L. & Rue, H. (2009). Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data, Statistics and Computing 19, forthcoming.

    Google Scholar 

  • Frühwirth-Schnatter, S. & Wagner, H. (2009). Stochastic model specification search for Gaussian and partially non-Gaussian state space models, Journal of Econometrics, forthcoming.

    Google Scholar 

  • Gamerman, D. (1997). Sampling from the posterior distribution in generalized linear mixed models, Statistics and Computing 7: 57–68.

    Article  Google Scholar 

  • Geyer, C. (1992). Practical Markov chain Monte Carlo, Statistical Science 7: 473–511.

    Article  Google Scholar 

  • Holmes, C. C. & Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression, Bayesian Analysis 1: 145–168.

    Article  MathSciNet  Google Scholar 

  • Imai, K. & van Dyk, D. A. (2005). A Bayesian analysis of the multinomial probit model using marginal data augmentation, Journal of Econometrics 124: 311–334.

    Article  MathSciNet  Google Scholar 

  • Kass, R. E., Carlin, B., Gelman, A. & Neal, R. (1998). Markov chain Monte Carlo in practice: A roundtable discussion, The American Statistician 52: 93–100.

    Article  MathSciNet  Google Scholar 

  • Lenk, P. J. & DeSarbo, W. S. (2000). Bayesian inference for finite mixtures of generalized linear models with random effects, Psychometrika 65: 93–119.

    Article  Google Scholar 

  • McCulloch, R. E., Polson, N. G. & Rossi, P. E. (2000). A Bayesian analysis of the multinomial probit model with fully identified parameters, Journal of Econometrics 99: 173–193.

    Article  MATH  Google Scholar 

  • McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour, in P. Zarembka (ed.), Frontiers of Econometrics, Academic, New York, pp. 105–142.

    Google Scholar 

  • Monahan, J. F. & Stefanski, L. A. (1992). Normal scale mixture approximations to F*(z) and computation of the logistics normal integral, in N. Balakrishnan (ed.), Handbook of the Logistic Distribution, Marcel Dekker, New York, pp. 529–549.

    Google Scholar 

  • Roberts, G. O. & Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–Hastings algorithms, Statistical Science 16: 351–367.

    Article  MATH  MathSciNet  Google Scholar 

  • Rossi, P. E., Allenby, G. M. & McCulloch, R. (2005). Bayesian Statistics and Marketing, Wiley, Chichester.

    Book  MATH  Google Scholar 

  • Scott, S. L. (2009). Data augmentation and the Bayesian analysis of multinomial logit models, Statistical Papers, forthcoming.

    Google Scholar 

  • Tüchler, R. (2008). Bayesian variable selection for logistic models using auxiliary mixture sampling, Journal of Computational and Graphical Statistics 17: 76–94.

    Article  MathSciNet  Google Scholar 

  • Zeger, S. L. & Karim, M. (1991). Generalized linear models with random effects: a Gibbs sampling approach, Journal of the American Statistical Association 86: 79–86.

    Article  MathSciNet  Google Scholar 

  • Zellner, A. & Rossi, P. E. (1984). Bayesian analysis of dichotomous quantal response models, Journal of Econometrics 25: 365–393.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author’s research is supported by the Austrian Science Foundation (FWF) under the grant S 10309-G14 (NRN “The Austrian Center for Labor Economics and the Analysis of the Welfare State”, Subproject “Bayesian Econometrics”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Frühwirth-Schnatter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frühwirth-Schnatter, S., Frühwirth, R. (2010). Data Augmentation and MCMC for Binary and Multinomial Logit Models. In: Kneib, T., Tutz, G. (eds) Statistical Modelling and Regression Structures. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2413-1_7

Download citation

Publish with us

Policies and ethics