Skip to main content

Boosting for Estimating Spatially Structured Additive Models

  • Chapter
  • First Online:
Statistical Modelling and Regression Structures

Abstract

Spatially structured additivemodels offer the flexibility to estimate regression relationships for spatially and temporally correlated data. Here, we focus on the estimation of conditional deer browsing probabilities in the National Park “Bayerischer Wald”. The models are fitted using a componentwise boosting algorithm. Smooth and non-smooth base learners for the spatial component of the models are compared. A benchmark comparison indicates that browsing intensities may be best described by non-smooth base learners allowing for abrupt changes in the regression relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammer, C. (1996). Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps, Forest Ecology and Management 88: 43–53.

    Article  Google Scholar 

  • Augustin, N., Musio, M., von Wilpert E, K., Kublin, Wood, S. & Schumacher, M. (2009). Modelling spatio-temporal forest health monitoring data.

    Google Scholar 

  • Breiman, L. (1996). Bagging predictors, Machine Learning 24: 123–140.

    MATH  MathSciNet  Google Scholar 

  • Breiman, L. (2001). Random forests, Machine Learning 45: 5–32.

    Article  MATH  Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1983). Classification and regression trees, Wadsworth, Belmont, California .

    Google Scholar 

  • Bühlmann, P. (2004). Bagging, boosting and ensemble methods, in J. Gentle, W. Härdle & Y.Mori (eds), Handbook of Computational Statistics: Concepts and Methods, Springer.

    Google Scholar 

  • Bühlmann, P. & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting, Statistical Science 22(4): 477–505.

    Article  MathSciNet  Google Scholar 

  • Bühlmann, P. & Yu, B. (2003). Boosting with the l 2 loss: Regression and classification, Journal of the American Statistical Association 98: 324–339.

    Article  MATH  MathSciNet  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife, Annals of Statistics 7: 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Eiberle, K. (1989). Über den Einfluss des Wildverbisses auf die Mortalität von jungen Waldbämen in der oberen Montanstufe, Schweizer Zeitschrift für Forstwesen 140: 1031–1042.

    Google Scholar 

  • Eiberle, K. & Nigg, H. (1987). Grundlagen zur Beurteilung des Wildverbisses im Gebirgswald, Schweizer Zeitschrift für Forstwesen 138: 474–785.

    Google Scholar 

  • Eilers, P. & Marx, B. (1996). Flexible smoothing with B-splines and penalties, Statistical Science 11: 89–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Fahrmeir, L., Kneib, T. & Lang, S. (2004). Penalized structured additive regression for space-time data: A Bayesian perspective, Statistica Sinica 14: 731–761.

    MATH  MathSciNet  Google Scholar 

  • Forstliches Gutachten (2006). Forstliche Gutachten zur Situation der Waldverjungung 2006, Bayerische Staatsministerium für Landwirtschaft und Forsten.

    Google Scholar 

  • Friedman, J. (2001). Greedy function approximation: A gradient boosting machine, The Annals of Statistics 29: 1189–1232.

    Article  MATH  MathSciNet  Google Scholar 

  • Fritz, P. (2006). Ökologischer Waldumbau in Deutschland - Fragen, Antworten, Perspektiven, Oekom, München.

    Google Scholar 

  • Hastie, T. & Tibshirani, R. (1990). Generalized Additive Models, Chapman & Hall/CRC.

    Google Scholar 

  • Hastie, T., Tibshirani, R. & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer.

    Google Scholar 

  • Hothorn, T., Hornik, K. & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework, Journal of Computational and Graphical Statistics 15: 651–674.

    Article  MathSciNet  Google Scholar 

  • Kneib, T., Hothorn, T. & Tutz, G. (2009). Variable selection and model choice in geoadditive regression models, Biometrics 65: 626–634.

    Article  MATH  Google Scholar 

  • Knoke, T., Ammer, C., Stimm, B. & Mosandl, R. (2008). Admixing broad-leaved to coniferous tree species–A review on yield, ecological stability and economics, European Journal of Forest Research 127: 89–101.

    Article  Google Scholar 

  • Knoke, T. & Seifert, T. (2008). Integrating selected ecological effects of mixed european beech–Norway spruce stands in bioeconomic modelling, Ecological Modelling 210: 487–498.

    Article  Google Scholar 

  • Lutz, R., Kalisch, M. & Bühlmann, P. (2008). Robustified l 2 boosting, Computational Statistics & Data Analysis 52: 3331–3341.

    Article  MATH  MathSciNet  Google Scholar 

  • Moog, M. (2008). Bewertung von Wildschäden im Wald, Neumann-Neudamm, Melsungen.

    Google Scholar 

  • Motta, R. (2003). Ungulate impact on rowan (Sorbus aucuparia l) and norway spruce (Picea abies (l) karst) height structure in mountain forests in the italian alps, Forest Ecology and Management 181: 139–150.

    Article  Google Scholar 

  • Prien, S. (1997). Wildschäden im Wald, Paul Parey, Berlin.

    Google Scholar 

  • Rüegg, D. (1999). Zur Erhebung des Einflusses von Wildtieren auf die Waldverüngung, Schweizer Zeitschrift für Forstwesen 150: 327–331.

    Article  Google Scholar 

  • Schmid, M. & Hothorn, T. (2008). Boosting additive models using component-wise P-splines, Computational Statistics & Data Analysis 53: 298–311.

    Article  Google Scholar 

  • Weisberg, P., Bonavia, F. & Bugmann, H. (2005). Modeling the interacting effects of browsing and shading on mountain forest regeneration (Picea abies), Ecological Modelling 185: 213–230.

    Article  Google Scholar 

  • Wood, S. (2006). Generalized Additive Models: An Introduction with R, Chapman & Hall/CRC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Robinzonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinzonov, N., Hothorn, T. (2010). Boosting for Estimating Spatially Structured Additive Models. In: Kneib, T., Tutz, G. (eds) Statistical Modelling and Regression Structures. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2413-1_10

Download citation

Publish with us

Policies and ethics