Skip to main content

Parameterization and Fitting of a Class of Discrete Graphical Models

  • Conference paper
COMPSTAT 2008

Abstract

Graphical Markov models are multivariate statistical models in which the joint distribution satisfies independence statements that are captured by a graph. We consider models for discrete variables, that are analogous to multivariate regressions in the linear case, when the variables can be arranged in sequences of joint response, intermediate and purely explanatory variables. In the case of one single group of variables, these models specify marginal independencies of pairs of variables. We show that the models admit a proper marginal log-linear parameterization that can accommodate all the marginal and conditional independence constraints involved, and can be fitted, using maximum likelihood under a multinomial assumption, by a general iterative gradient-based algorithm. We discuss a technique for determining fast approximate estimates, that can also be used for initializing the general algorithm and we present an illustration based on data from the U.S. General Social Survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AITCHISON, J. and SILVEY, S.D. (1958): Maximum likelihood estimation of parameter subject to restraints. Annals of Mathematical Statistics 29, 813–828.

    Article  MATH  MathSciNet  Google Scholar 

  • BARTOLUCCI, F., COLOMBI, R. and FORCINA, A. (2007): An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints. Statistica Sinica 17, 691–711.

    MATH  MathSciNet  Google Scholar 

  • BERGSMA, W.P. (1997): Marginal models for categorical data, Ph.D Thesis, Tilburg.

    Google Scholar 

  • BERGSMA, W.P. and RUDAS, T. (2002): Marginal log-linear models for categorical data. Annals of Statistics 30, 140–159.

    Article  MATH  MathSciNet  Google Scholar 

  • COX, D.R. (2006): Principles of Statistical Inference. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • COX, D.R. and WERMUTH, N. (1990): An approximation to maximum likelihood estimates in reduced models. Biometrika 77, 747–761.

    Article  MATH  MathSciNet  Google Scholar 

  • COX, D.R. and WERMUTH, N. (1996): Multivariate dependencies. Models, analysis and interpretation. Chapman and Hall, London.

    MATH  Google Scholar 

  • DAVIS, J.A., SMITH, T.W. and MARDSEN, J.A. (2007): General Social Surveys Cumulative Codebook: 1972-2006. NORC, Chicago. URL http://sda.berkeley.edu/GSS/.

  • DRTON, M., EICHLER, M. and RICHARDSON, T.S. (2007): Identification and Likelihood Inference for Recursive Linear Models with Correlated Errors. arXiv:0601631 .

  • DRTON, M. and RICHARDSON, T.S. (2008): Binary models for marginal independence. J. Royal Statist. Soc., Ser. B 70, 287–309.

    Article  Google Scholar 

  • GLONEK, G.F.V. and McCULLAGH, P. (1995): Multivariate logistic models. J. Royal Statist. Soc., Ser. B 57, 533–546.

    MATH  Google Scholar 

  • KAUERMANN, G. (1996): On a dualization of graphical Gaussian models. Scand. J. of Statistics 23, 105–116.

    MATH  MathSciNet  Google Scholar 

  • KAUERMANN, G. (1997): A note on multivariate logistic models for contingency tables. Australian Journal of Statistics 39(3), 261–276.

    Article  MATH  MathSciNet  Google Scholar 

  • LAURITZEN, S.L. (1996): Graphical Models. Oxford University Press, Oxford.

    Google Scholar 

  • LUPPARELLI, M., MARCHETTI, G.M. and BERGSMA, W.P. (2008): Parameterizations and fitting of bi-directed graph models to categorical data. arXiv:0801.1440 .

  • R DEVELOPMENT CORE TEAM (2008): R: A language and environment for sta- tistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

  • RICHARDSON, T.S. (2003): Markov property for acyclic directed mixed graphs. Scand. J. of Statistics 30, 145–157.

    Article  MATH  Google Scholar 

  • RODDAM, A.W. (2004): An approximate maximum likelihood procedure for pa- rameter estimation in multivariate discrete data regression models. J. of Applied Statistics 28, 273–279.

    Article  MathSciNet  Google Scholar 

  • RUDAS, T., BERGSMA, W.P. and NÉMETH, R. (2006): Parameterization and estimation of path models for categorical data. In: A. Rizzi & M. Vichi, (Eds.): Compstat 2006 Proceedings. Physica-Verlag, Heidelberg, 383–394.

    Chapter  Google Scholar 

  • WERMUTH, N. and COX, D.R. (2004): Joint response graphs and separation induced by triangular systems. J. Royal Statist. Soc. B 66, 687–717.

    Article  MATH  MathSciNet  Google Scholar 

  • WERMUTH, N., COX, D.R. and MARCHETTI, G.M. (2006): Covariance chains. Bernoulli, 12, 841–862.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni M. Marchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Physica-Verlag Heidelberg

About this paper

Cite this paper

Marchetti, G.M., Lupparelli, M. (2008). Parameterization and Fitting of a Class of Discrete Graphical Models. In: Brito, P. (eds) COMPSTAT 2008. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2084-3_10

Download citation

Publish with us

Policies and ethics