Skip to main content

On the Mathematical Analysis of an Elastic-gravitational Layered Earth Model for Magmatic Intrusion: The Stationary Case

  • Chapter
  • First Online:
Earth Sciences and Mathematics

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 504 Accesses

Abstract

In the early eighties (Rundle 1980, 1981a, 1981b, 1982) developed the techniques needed for calculations of displacements and gravity changes due to internal sources of strain in layered linear elastic-gravitational media. The approximation of the solution for the half space was obtained by using the propagator matrix technique. The Earth model considered is elastic-gravitational, composed of several homogeneous layers overlying a bottom half space. Two dislocation sources can be considered, representing magma intrusions and faults. In recent decades theoretical and computational extensions of that model have been developed by Rundle and co-workers (e.g., Fernández and Rundle, 1994a,b; Fernández et al., 1997, 2005a; 37 Tiampo et al., 2004; Charco et al., 2006, 2007a,b). The source can be located at any depth in the media. In this work we prove that the perturbed equations representing the elastic-gravitational deformation problem, with the natural boundary and transmission conditions, leads to a well-posed problem even for varied domains and general data. We present constructive proof of the existence and we show the uniqueness and the continuous dependence with respect to the data of weak solutions of the coupled elastic-gravitational field equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, k., and Richards, P.G., Quantitative Seismology, (University Science Books, Sausalito, California., 2002).

    Google Scholar 

  • Brézis, H., Analyses fonctionelle: théorie et applications, (Alianza, Madrid., 1984).

    Google Scholar 

  • Bustin, A., Hyndman, R.D., Lambert, A., Ristau, J., He, J., Dragert, H., and Van der Kooij, M. (2004), Fault parameters of the Nisqually earthquake determined from moment tensor solutions and the surface deformation from GPS and InSAR, Bull. Seismol. Soc. Am. 94,2, 363–376.

    Article  Google Scholar 

  • Charco, M., Fernández, J., Luzón, F., and Rundle, J. B. (2006), On the relative importance of self-gravitation and elasticity in modelling volcanic ground deformation and gravity changes, J. Geophys. Res. 111, B03404, doi:10.1029/2005JB003754.

    Article  Google Scholar 

  • Charco, M., Luzón, F., Fernández, J., and Tiampo, K.F. (2007), Topography and selfgravitation interaction in elastic-gravitational modelling, Geochem. Geophy. Geosystems (G3), 8, Q01001, doi:10.1029/2006GC001412.

    Article  Google Scholar 

  • Charco, M., Fernández, J., Luzón, F., Tiampo, K.F., and Rundle, J.B. (2007b), Some insights about topographic, elastic and self-gravitation interaction in modelling ground deformation and gravity changes in active volcanic areas, Pure appl. geophys. 164/4, 865–878.

    Article  Google Scholar 

  • Díaz, J.I., and Talenti, G. (2004), A free boundary problem related to the location of volcanic gas sources, Pure Appl. Geophys. 161, 1509–1517.

    Article  Google Scholar 

  • Dixon, T.H., Mao, A., Bursik, M., Heflin, M., Langbein, J., Stein, R., and Webb, F. (1997), Continuous monitoring of surface deformation at Long Valley Caldera, California, with GPS, J. Geophys. Res. 102, 12017–12034.

    Article  Google Scholar 

  • Dzurisin, D. (2003), A comprehensive approach to monitoring volcano deformation as a window on the eruptive cycle, Rev. Geophys. 41(1), 1001, doi:10.1029/2001RG000107 (Correction: 2003,41(2), 1009, doi:10.1029/2003RG000134).

    Article  Google Scholar 

  • Fernández, J., and Rundle, J.B. (1994a), Gravity changes and deformation due to a magmatic intrusion in a two-layered crustal model, J. Geophys. Res. 99, 2737–2746.

    Article  Google Scholar 

  • Fernández, J., and Rundle, J.B. (1994b), FORTRAN program to compute displacement, potential and gravity changes resulting from a magma intrusion in a multilayered Earth model, Comp. Geosci. 20, 461–510.

    Article  Google Scholar 

  • Fernández, J., Rundle, J.B., Granell, R.D.R., and Yu, T.-T. (1997), Programs to compute deformation due to a magma intrusion in elastic-gravitational layered Earth models, Comp. Geosci. 23, 231–249.

    Article  Google Scholar 

  • Fernández, J., Charco, M., Tiampo, K.F., Jentzsch, G., and Rundle, J. B. (2001), Joint interpretation of displacement and gravity data in volcanic areas. A test example: Long Valley-Caldera, California, J. Volcanol. Geotherm. Res. 28, 1063–1066.

    Google Scholar 

  • Fernández, J., Tiampo, K.F., Rundle, J.B., and Jentzsch, G. (2005a), On the interpretation of vertical gravity gradients produced by magmatic intrusions, J. Geodyn. 39/5, 475–492. doi: 10.1016/j.jog.2005.04.005.

    Article  Google Scholar 

  • Fernández, J., Romero, R., Carrasco, D., Tiampo, K.F., Rodríguez-Velasco, G., Aparicio, A., Araña, V., and González-matesanz, F.J. (2005b), Detection of displacements in Tenerife Island Canaries, using radar interferometry, Geophys. J. Int. 160, 33–45. doi:10.111/j.1365-246x.200502487x.

    Article  Google Scholar 

  • Gilbarg, D., and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order, (Springer-Verlag, Berlin., 1977)

    Google Scholar 

  • Gudmunsson, S., and Sigmundsson, F. (2002), Three-dimensional surface motion maps estimated from combined interferometric systhetic aperture radar and GPS data, J. Geo-phys. Res. 107,B10, 2250. doi:10.1029/2001JB000283.

    Article  Google Scholar 

  • Lanari, R., Berardino, P., Borgström, S., DEL Gaudio, C., De Martino, P., Fornaro, G., Guarino, S., Ricciardi, G.P., Sansosti, E., and Lundgren, P. (2004), The use of IFSAR and classical geodetic techniques for caldera unrest episodes: Application to the Campi Flegrei uplift event of 2000, J. Volcanol. Geotherm. Res. 133, 247–260.

    Article  Google Scholar 

  • Larson, K.M., Cervelli, P., Lisowski, M., Miklius, A., Segall, P., and Owen, S. (2001), Volcano monitoring using the Global Positioning System: Filtering strategies, J. Geo-phys. Res. 106,B9, 19453–19464.

    Article  Google Scholar 

  • Lions, J.L. (1981), Some methods in the mathematical analysis of systems and their control, Science, Beijing.

    Google Scholar 

  • Love, A.E.H., Some problems in Geodynamics, (Cambridge University Press, New York., 1911).

    Google Scholar 

  • Lundgren, P., and Stramondo, S., (2002), Slip distribution of the 1997 Umbria-Marche earthquake sequence: Joint inversion of GPS and sysnthetic aperture radar interferometry data, J. Geophys. Res. 107,B11, 2316. doi:10.1029/2000JB000103.

    Article  Google Scholar 

  • Manzo, M., Ricciardi, G.P., Casu, F., Ventura, G., Zeni, G., Borgström, S., Berardino, P., Del Gaudio, C., and Lanari, R. (2006), Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry, J. volcanol. Geother. Res. 151, 399–416.

    Article  Google Scholar 

  • National Research Council of the NationalAcademies, Living on an active Earth. Per-spectives on Earthquake Science, (The National Academic Press, Washington, D.C., 2003, 33pp.)

    Google Scholar 

  • Pritchard, M.E., and Simons, M. (2002), A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes, Nature 418, 167–171.

    Article  Google Scholar 

  • Puglisi, G., and Coltelli, M. (2001), SAR Interferometry applications on active volcanoes: state of the art and perspective for volcano monitoring, Il Nuovo Cimento 24C, 133–145.

    Google Scholar 

  • Rundle, J.B. (1980), Static elastic-gravitational deformation of a layared half space by point couple, J. Geophys. Res., 85, 5355–5363.

    Article  Google Scholar 

  • Rundle, J.B. (1981a), Numerical Evaluation of static elastic-gravitational deformation of a layared half space by point couple sources, Rep., Sand 80–2048.

    Google Scholar 

  • Rundle, J.B. (1981b), Vertical displacements from a rectangular fault in layered elastic gravitational media, J. Phys. Earth 29, 173–186.

    Google Scholar 

  • Rundle, J.B. (1982), Viscoeslastic-gravitational deformation by a rectangular thrust fault in a layered Earth, J. Geophys. Res. 87,9, 7787–7796. (Correction: J. Geophys. Res. 88, 10.647–10.653).

    Article  Google Scholar 

  • Rundle, J.B. (1983), Correction to “Deformation, gravity and potential changes due to volcanic loading of the crust”, J. Geophys. Res, 88,10, 647–10, 653.

    Google Scholar 

  • Sagiya, T., Miyazaki, S., and Tada, T. (2000), Continuous GPS array and present-day crustal deformation of Japan, Pure appl. Geophys. 157, 2303–2322.

    Google Scholar 

  • Samsonov, S., and Tiampo, K., (2006), Analytical optimization of InSAR and GPS dataset for derivation of three-dimensional surface motion, (Journal, etc. missing)

    Google Scholar 

  • Segall, P., and Davis, J. (1997), GPS applications for geodynamics and earthquakes studies, Annual Rev. Earth Planet. Sci. 25, 301–336.

    Article  Google Scholar 

  • Sigurdsson, H., Houghton, B., Mcnutt, S. R., Rymer, H., and Stix, J. (2000), Encyclopedia of Volcanoes, (Academic Press, 1417, 34pp.)

    Google Scholar 

  • Tamisiea, M.E., Mitrovica, J.X., and Davis, J. L. (2007), GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia, Science 316, 5826

    Article  Google Scholar 

  • Tiampo, K.F., Fernández, J., Jentzsch, G., Charco, M., AND Rundle, J.B. (2004), Inverting for the parameters of a volcanic source using a genetic algorithm and a model for magmatic intrusion in elastic-gravitational layered Earth models, Comp. Geosci. 30/9-10 985–1001.

    Article  Google Scholar 

  • Wright, T.J. (2002), Remote monitoring of the earthquake cycle using satellite radar interfer-ometry, Phil. Trans. R. Soc. Lond. A 360, 2873–2888.

    Article  Google Scholar 

  • Yoshiyuki, T., Shuhei, O., Morito, M., Isao, K., and Toshihiro, k., (2001), First detection of absolute gravity change caused by earthquake, geophys. Res. Lett. 28, 2979–2981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Arjona, A., Díaz, J.I., Fernández, J., Rundle, J.B. (2008). On the Mathematical Analysis of an Elastic-gravitational Layered Earth Model for Magmatic Intrusion: The Stationary Case. In: Camacho, A.G., Díaz, J.I., Fernändez, J. (eds) Earth Sciences and Mathematics. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9964-1_2

Download citation

Publish with us

Policies and ethics