Skip to main content

Bezoutians Applied to Least Squares Approximation of Rational Functions

  • Chapter
Numerical Methods for Structured Matrices and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 199))

  • 1002 Accesses

Abstract

A projection method to reduce large scale discrete systems which has been introduced in au][12, 21] will be generalized to continues systems without to transform it bilinear. To achieve that goal depending on an algebraic curve γ { ℂ and a rational function h ∈ ℂ(z) a non negative function F: ℂm » ℝ is introduced whose minimizer provides an approximant of degree m. Special cases are obtained via specification of γ and h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S. Ammar, W.B. Gragg, Numerical experience with a superfast real Toeplitz solver, LAA 34 (1980), 103–116

    Google Scholar 

  2. G.S. Ammar, W.B. Gragg, The generalized Schur algorithm for the superfast solution of Toeplitz systems, in: J. Gilewicz, M. Pidor, W. Siemaszko (Eds.), Rational Approximation and it Applications in Mathematics and Physics, Lecture Notes in Mathematics, vol. 1237, 1987, pp. 315

    Google Scholar 

  3. G.S. Ammar, W.B. Gragg, Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl. 9 (1) (1988), 61–76

    Article  MATH  MathSciNet  Google Scholar 

  4. A.C. Antoulas, D. Sorenson, S. Gugercin, A survey of model reduction methods for large scale systems, Contemporary Mathematics, AMS Publications (2001), 193–221

    Google Scholar 

  5. M. Van Barel, A. Bultheel, Padé techniques for model reduction in linear system theory: a survey, J. Comput. Appl. Math. 14 (1986), 401–438

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Van Barel, G. Heinig, P. Kravanja, A superfast method for solving Toeplitz linear least squares problems, LAA 366 (2003), 441–457

    MATH  Google Scholar 

  7. M. Van Barel, G. Heinig, P. Kravanja, A stabilized superfast solver for nonsymmetric Toeplitz systems, SIAM J. Matrix Anal. Appl.23 (2) (2001), 494–510

    Article  MATH  MathSciNet  Google Scholar 

  8. O. Brune, Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency, J. of Math. Phys. 10 (1931), 191–236

    Google Scholar 

  9. P.J. Davis, Interpolation&Approximation, Dover, New York, 1975

    MATH  Google Scholar 

  10. L. Fejér, Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen, Math. Annalen 85 (1922), 41–48

    Article  MATH  Google Scholar 

  11. S. Feldmann, Fejér’s convex hull theorem related to least squares approximation of rational functions, in preparation

    Google Scholar 

  12. S. Feldmann, P. Lang, A least squares approach to reduce stable discrete linear systems preserving their stability, LAA 381 (2004), 141–163

    MATH  MathSciNet  Google Scholar 

  13. S. Feldmann, P. Lang, D. Prätzel-Wolters, A unified least squares approach to identify and to reduce continuous asymptotically stable systems, LAA 426, Issues 2–3 (2007), 674–689

    MATH  Google Scholar 

  14. P.A. Fuhrmann, A Polynomial Approach to Linear Algebra, Springer, New York, Berlin, Heidelberg, 1996

    MATH  Google Scholar 

  15. M. Fujiwara, Über die algebraischen Gleichungen, deren Wurzeln in einem Kreise oder in einer Halbebene liegen, Math. Z. 24 (1926), 161–169

    Article  MathSciNet  Google Scholar 

  16. K.A. Gallivan, S. Thirumalai, P. Van Dooren, V. Vermaut, High performance algorithms for Toeplitz and block Toeplitz matrices, LAA 241–243 (1996), 343–388

    Google Scholar 

  17. I. Gohberg, T. Kailath, V. Olshevsky, Fast Gaussian elimination with partial pivoting for matrices with displacement structure, Math. Comp. 64 (212) (1995), 1557–1576

    Article  MATH  MathSciNet  Google Scholar 

  18. G.H. Golub, Ch.F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1991

    Google Scholar 

  19. M. Gu, New fast algorithms for structured least squares problems, SIAM J. Matrix Anal. Appl. 20 (1) (1998), 244–269

    Article  MATH  Google Scholar 

  20. M. Gu, Stable and efficient algorithm for structured systems of equations, SIAM J. Matrix Anal. Appl. 19 (2) (1997), 279–306

    Article  Google Scholar 

  21. S. Gugercin, A.C. Antoulas, Model reduction of large-scale systems by least squares, LAA 415, Issue 2–3 (2006), 290–321

    MATH  MathSciNet  Google Scholar 

  22. G. Heinig, Bezoutiante, Resultante und Spektralverteilungsprobleme für Operatorpolynome, Math. Nachr. 91 (1979), 23–43

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Heinig, U. Jungnickel, Zur Lösung von Matrixgleichungen der Form AX-XB =C, Wiss. Zeitschrift der TH Karl-Marx-Stadt 23 (1981), 387–393

    MATH  MathSciNet  Google Scholar 

  24. G. Heinig, K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Akademie-Verlag, Berlin, 1984

    MATH  Google Scholar 

  25. U. Helmke, P.A. Fuhrmann, Bezoutians, LAA 122–124 (1989), 1039–1097

    MathSciNet  Google Scholar 

  26. M.G. Krein, M.A. Naimark, The Method of Symmetric and Hermitian Forms in the Theory of the Separation of the Roots of Algebraic Equations, English translation in Linear and Multilinear Algebra 10 (1981), 265–308

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Lanczos, Applied Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1956

    Google Scholar 

  28. T. Penzl, A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., Vol. 21, No. 4 (2000), 1401–1418

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Rudin, Real and Complex Analysis, Mc Graw-Hill, New York, 1987

    MATH  Google Scholar 

  30. J.T. Spanos, M.H. Milman, D.L. Mingori, A new algorithm for L2-optimal model reduction, Automatica 28 (1992), 897–909

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Sylvester, On a Theory of the Syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s Functions, and that of the greatest Algebraic Common Measure, Philos. Trans. Roy. Soc. London 143 (1853), 407–548

    Article  Google Scholar 

  32. D.A. Wilson, Optimum solution of model reduction problem, Proc. Inst. Elec. Eng. (1970) 1161–1165

    Google Scholar 

  33. H.K. Wimmer, On the history of the Bezoutian and the resultant matrix, LAA 128 (1990) 27–34

    MATH  MathSciNet  Google Scholar 

  34. W.Y. Yan, J. Lam, An approximative approach to H 2-optimal model reduction, IEEE Trans. Automatic Control, AC-44 (1999), 1341–1358

    MathSciNet  Google Scholar 

  35. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice Hall, Simon & Schuster, New Jersey, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Georg Heinig

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Feldmann, S. (2010). Bezoutians Applied to Least Squares Approximation of Rational Functions. In: Bini, D.A., Mehrmann, V., Olshevsky, V., Tyrtyshnikov, E.E., van Barel, M. (eds) Numerical Methods for Structured Matrices and Applications. Operator Theory: Advances and Applications, vol 199. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8996-3_12

Download citation

Publish with us

Policies and ethics